WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     || 2 | 3 | 4 | 5 |

«В. М. Мхитарян ВОЗБУЖДЕНИЕ СРЕДЫ ИНДУКЦИЕЙ МАГНИТНОГО ПОЛЯ ЧАСТЬ I ФИЗИЧЕСКИЕ ОСНОВЫ Аштарак - 2006 Возбуждение среды индукцией магнитного поля Часть I - Физические ...»

-- [ Страница 1 ] --

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИ

ИНСТИТУТ ФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ

Препринт 04.05.2006

В. М. Мхитарян

ВОЗБУЖДЕНИЕ СРЕДЫ

ИНДУКЦИЕЙ МАГНИТНОГО ПОЛЯ

ЧАСТЬ I

ФИЗИЧЕСКИЕ ОСНОВЫ

Аштарак - 2006

Возбуждение среды индукцией магнитного поля Часть I - Физические основы В. М. Мхитарян Аннотация Предложено описание движения заряда в переменном магнитном поле на основе обобщения закона Фарадея для движущегося заряда. При движении заряда в поле индукции выявлена сила Фарадея - сила индукции, действующая по направлению движения. Показано, что силы Лоренца и Фарадея являются, соответственно, перпендикулярной и параллельной к скорости движения компонентами одной и той же силы - силы индукции, возникающая только при движении заряда. Характеристики сил указывают, что нельзя идентифицировать действующие на движущийся заряд силы индукции как силы индуцированного электрического поля, являющийся решением уравнений Максвелла.

В рамках адиабатического приближения получены уравнение движения, выражения обобщенного импульса и гамильтониана системы "заряд + поле индукции". Анализированы движение заряда по ларморовской орбите, условия ускорения в бетатроне, процессы индукционного разряда и нагрева электронного газа и газа магнитных диполей.

Выведено уравнение движения магнитного момента в переменном магнитном поле и дополнены (исправлены) уравнения Блоха. Рассмотрены условия обратимости процессов возбуждения.

Рассмотрена задача квантования движения заряда в переменном магнитном поле на основе гамильтониана и уравнения Шредингера, уровни энергии заряда и атома в переменном магнитном поле, расщепления и возбуждения вырожденного уровня, возбуждения магнитно-вращательных уровней, вращательно-колебательных уровней и переходов.

Рассмотрены механизмы создания инверсии населенности в среде при возбуждении индукцией магнитного поля.

PACS: 29.20.Fj, 41.20.Gz, 52.80.Yr

СОДЕРЖАНИЕ

Введение 6. Квантование движения заряда 1. Силы, действующие на движущийся заряд в переменном магнитном поле 6.1 Гамильтониан и уравнение Шредингера в переменном магнитном поле 1.1 Закон индукции для движущегося заряда 6.2 Свободный заряд в переменном магнитном поле 1.2 Сила индукции - силы Лоренца и Фарадея 6.3 Атом в переменном магнитном поле 1.3 Сила индуцированного электрического поля 6.4 Молекула в переменном магнитном поле 1.4 Сумма сил, действующих на заряд при движении в 6.5 Диамагнитная восприимчивость среды переменном магнитном поле 2. Движение заряда в переменном магнитном поле 7. Создание инверсии населенностей в среде 2.1 Уравнение движения при адиабатическом прибли- при возбуждении индукцией магнитного поля жении 7.1 Расщепление и возбуждение вырожденного 2.2 Обобщенный импульс и адиабатический инвариант уровня 2.3 Движение по ларморовской орбите 7.2 Электронные уровни и переходы 2.4 Учет размеров области взаимодействия 7.3 Вращательно-колебательные уровни и переходы 7.4 Атом натрия в переменном магнитном поле 3. Бетатрон 3.1 Движение по кругу 3.3 Энергия ускорения и устойчивость орбит Заключение 4. Индукционный ток и нагрев свободных зарядов 4.1 Индукционный ток Приложение 1: Вывод уравнения движения магнитноИндукционный нагрев го момента в переменном во времени однородном 4.3 Трансформатор. и бетатронный характер нагрева магнитном поле на основе выражения силы ЛоУчет размеров области взаимодействия ренца 4.5 Обратимость процессов нагрева Приложение 2: Выражение полной производной по времени поверхностного интеграла, область инМагнитный момент тегрирования которого зависит от времени в переменном магнитном поле 5.1 Уравнение движения магнитного момента Приложение 3: Продолжающаяся историческая драма 5.2 Квантование движения магнитного момента - создание бетатрона 5.3 Дополненные уравнения Блоха 5.4 Возбуждение магнитно-вращательных уровней Литература 5.6 Обратимость процессов возбуждения Введение Вопросы теории движения заряда в переменном магнитном поле, помимо теоретической, имеют важное прикладное значение в областях ускорения частиц (бетатрон) [1], физики плазмы [2], индукционного разряда и обработки материалов [3,4]. В последние годы ведутся интенсивные исследования и разработки индукционного разряда и возбуждения сред индукцией магнитного поля с целью создания мощных плазмотронов [5], плазмореактивных двигателей [6], источников излучения [7] и лазеров [8].

Хотя индукционный разряд известен уже 120 [9], а индукционный ускоритель электрона - бетатрон, более 80 лет [10], имеющиеся на сегодня теория движения и ускорения зарядов в переменном магнитном поле неудовлетворительно описывает реальные процессы ускорения и нагрева зарядов индуцированным электрическим полем. В частности, условие Видероэ для кругового движения заряда в бетатроне при отношении полей 2:1 так и не было подтверждено и теория ускорения заряда индуцированным электрическим полем в бетатроне не нашло соответствующего развития - решались только задачи устойчивости движения [1,10]. А при индукционном разряде не объясняется даже само существование разряда, который происходит в центральной части соленоида, где индуцированное электрическое поле и ток равны нулю [3,4,7].

Последовательное построение теории движения зарядов в электромагнитных полях базируется на уравнениях электромагнитных полей и уравнении движения зарядов. Если рассматривается движение одной заряженной частицы в заданном поле, то можно считать, что токи и поля самой частицы, в известных пределах, не влияют на движение частицы. В такой постановке решение задачи можно разделить на два этапа:

I. Нахождение полей E и B в зависимости от заданных граничных условий и источников, II. Решение уравнения движения частицы с массой m и зарядом q при заданных полях E и B.

Электромагнитные поля описываются законами, сформулированные Максвеллом в г. в виде уравнений1, которые в представлении Герца-Хевисайда имеют вид J. C. Maxwell, A treatise on Electricity and Magnetism, 1 E j ; divE = 4 ;

rotB = + c t c (A) 1 B rotE = divB = 0;

Поля E и B являются решениями этих уравнений при заданных граничных условиях и источниках и j. Эти поля существуют в независимости от того, есть ли частица или нет, в движении она или в покое. Из уравнений Максвелла направления и величины полей определяются только симметрией и граничными условиями задачи.

Следующий этап, это решение уравнения движения заряженной частицы в заданных полях E и B в которой еще предстоит определить, как зависит действующий на заряд сила F от этих параметров - от скорости частицы, заряда и полей. Ни эта закономерность, ни уравнение движения уже никак не связаны с уравнениями Максвелла (поля E и B уже заданы и присутствуют) и следует базироваться на других законах. Обычно, это закон Фарадея, который формулируется следующим образом:

Работа силы индукции FI над зарядом q по замкнутой кривой L равна изменению потока Ф магнитного поля B через площадь S замкнутой кривой вне зависимости от причин изменения этого потока.

Это не свойство полей E и B, выраженное из (A) в интегральной форме когда изменение одного порождает (индуцирует) другого. Соотношение (D) с частными производным под интегралом выражает только свойство полей и для выражения этого свойства нет нужды в посторонней частице c зарядом q и массой m или его движении. Это свойство самих полей, а не свойство взаимодействия полей с заряженной частицей или эффект движения частицы. Какими свойствами обладает взаимодействие полей с частицей, не может быть обсужден в рамках уравнений Максвелла, так как в уравнениях полей (A) рассматриваемой частицы просто не существует.

Когда Фарадей ставил свои опыты с переменным магнитным полем и открыл свойство индукции магнитным полем электрического поля, в то время не было знаний о том, что это свойство самих полей. Это случилось после, когда Максвелл написал свои уравнения, а Герц экспериментально доказал существование электромагнитных волн. Поэтому и в формулировке Фарадея 13-ого июня 1831 года были "объединены" в одну как свойства действующих на движущийся заряд сил, так и свойства самых полей. Максвелл идентифицировал закон Фарадея как вторую пару уравнений поля (A), отражающие всего лишь свойство взаимного индуцирования полей и, которые, никак не отражали сформулированный выше закон Фарадея (C). К сожалению, гениальная догадка Максвелла привела к большой путанице - исторически сложилось мнение, что уравнение Максвелла с членом B/t и есть закон Фарадея.

Последующее историческое развитие настолько закрепило эту путаницу, что, несмотря на очевидное различие, ученые старались "объединить" два совершенно различных явления (C) и (D). Такие попытки можно найти как в школьных учебниках, так и в книгах великих ученых.

В своих знаменитых лекциях Ричард Фейнман, описывая попытки объединения закона Фарадея (C) и свойства полей (D), пишет2,– «Мы не знаем в физике ни одного другого такого примера, когда бы простой и точный общий закон требовал для своего настоящего понимания анализа в терминах двух разных явлений. Обычно столь красивое обобщение оказывается исходящим из единого глубокого основополагающего принципа. Но в данном случае какого-либо особого глубокого принципа не видно. Мы должны воспринимать "правило" как совместный эффект двух совершенно различных явлений». (Кавычки слова "правило" и подчеркивание слов соответствуют оригиналу.) В описании явлений магнитного резонанса, когда рассматривается движение магнитного момента в переменном магнитном поле, тоже допущены принципиальные ошибки. Известно, что уравнение движения магнитного момента в виде где L = (q/2mc)B – Ларморовская угловая скорость вращения, относятся к случаю постоянного магнитного поля [15]. Если умножить уравнение (E) на L скалярно, то получается L2 = const и становиться очевидным, что возбуждение момента не происходит.

Р. Фейнман, Р. Лейтон, М. Сендс, Фейнмановские лекции по физике, т. 6, Электродинамика, Издательство "Мир", Москва, 1977, Глава 17, Законы индукции, §1. Физика индукции, с. Несмотря на это, 19 июля 1946 года Ф. Блох, для описания ядерного парамагнитного резонанса, в уравнении (E) добавил релаксационные члены и использовал для случая переменных полей [17,18] dL L L где - характерные времена продольной и поперечной релаксаций, а L0 - равновесное значение момента.

В дальнейшем уравнение Блоха (F) вовсю использовали для описания явлений магнитного резонанса в переменных магнитных полях.

В сущности, Ф. Блох и другие рассматривали уравнения (E) и (F) как уравнение для момента частицы L, а не уравнение для обобщенного момента J в магнитном поле, как обычно в импульсном представлении рассматривается уравнение движения обобщенного импульса.

Такое рассмотрение является принципиальной ошибкой, так как, во-первых, для момента частицы L уравнение имеет такой вид только в случае постоянного магнитного поля [15] и, во-вторых, в случае переменного магнитного поля в уравнениях (E) и (F) отсутствует очевидный член в виде ~ r2dB/dt, отвечающий за возбуждение любой токовой петли площадью ~ r 2 (магнитного момента) индукцией магнитного поля.

В книгах по магнитному резонансу не приводиться вывод уравнений для переменного магнитного поля и не указывается, что используемые уравнения верны только в случае постоянного магнитного поля. Вместо объяснений, откуда взялись эти уравнения для переменных магнитных полей, обычно отписываются выражением "феноменологические уравнения Блоха".



Pages:     || 2 | 3 | 4 | 5 |
 


Похожие работы:

«Борис Евсеевич Чертой Книга 2. Ракеты и люди. Фили-Подлипки-Тюратам Предисловие к первому изданию В конце 1994 года вышла из печати первая книга моих воспоминаний Ракеты и люди. Незамедлительно последовали письма и устны е отзывы, телеф онны е звонки, содерж ащ ие как хвалу, так и справедливые замечания. Интерес, с которым была встречена книга, превзошел мои ожидания. У многих читателей возникал в о п р о с: ко гд а б у д е т п р о д о л ж е н и е ? Не о б л а д а я л и те р а ту р н ы м о п ы...»

«ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ С НЕЧЕТКОЙ ЛОГИКОЙ А.А.Усков Введение. Нечеткое управление (Fuzzy Control, Fuzzy-управление) в настоящее время является одной из перспективнейших интеллектуальных технологий, позволяющих создавать высококачественные системы управления [1-8]. Число публикаций посвященных нечетким системам управления огромно (только число монографий составляет тысячи) и продолжает увеличиваться. При этом значительная их доля приходится на англоязычные издания. Назовем...»

«(сигнатуры рукописей соответственно 1446 ар. и 3180 ар.), хранящиеся в данном Отделе. Как...»

«О годах ссылки Тараса Григорьевича написано немало. Воспоминаний. Статей. Книг. Но белых пятен столько, что надо искать и искать. На страницах своих исследовательских повестей я веду читателей по следам оренбургской зимы Шевченко, раскрываю страницы его дружбы с Желиговским, революционным поэтом Польши, рассказываю о загадке интереснейших шевченковских документов, касающихся орского периода. Скажу сразу - много тут сведений, почерпнутых из книг, и это - закономерно. Но большая часть разделов и...»

«МАЛДЕНА Книга 1. КУНДАЛИНИ 2011 СОДЕРЖАНИЕ ПРЕДИСЛОВИЕ БЛАГОДАРНОСТИ Часть 1. МОЙ ЕГИПЕТ Часть 2. СИМПТОМЫ ПЕРЕХОДА Часть 3. МОИ ЕЖЕДНЕВНЫЕ ПРАКТИКИ Часть 4. МЕДИТАЦИЯ 20-20-20 Часть 5. ЧЕННЕЛИНГИ С МАЛДЕНОЙ Часть 6. ЧЕННЕЛИНГИ ОТ СФИНКСА Часть 7. МОИ СТИХИ Часть 8. ПОСЛАНИЯ ВЛАДЫК 1 ПРЕДИСЛОВИЕ Эту КНИГУ я посвящаю самому любимому Члену моей Земной Семьи – ЧЕЛОВЕКУ! Родной мой! Мы с тобой не случайно встретились в этом месте и в это время – случайностей вообще не бывает в Земной Жизни. Все...»

«ПОСТАНОВЛЕНИЕ от 28 июня 2010 г. N 727 ОБ УТВЕРЖДЕНИИ ПОЛОЖЕНИЙ ОБ ОСОБО ОХРАНЯЕМЫХ ПРИРОДНЫХ ТЕРРИТОРИЯХ ОБЛАСТНОГО ЗНАЧЕНИЯ КОМПЛЕКСНЫХ (ЛАНДШАФТНЫХ) ГОСУДАРСТВЕННЫХ ПРИРОДНЫХ ЗАКАЗНИКАХ В ТОТЕМСКОМ РАЙОНЕ ВОЛОГОДСКОЙ ОБЛАСТИ В соответствии с Федеральными законами от 14 марта 1995 года N 33-ФЗ Об особо охраняемых природных территориях, от 6 октября 1999 года N 184-ФЗ Об общих принципах организации законодательных (представительных) и исполнительных органов государственной власти субъектов...»

«УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС Учебно-методический комплекс по дисциплине по дисциплине Менеджмент У 91 Менеджмент / сост. Р. К. Крайнева. – Тольятти : Изд-во для студентов среднего профессионального образования ПВГУС, 2013. – 88 с. Для студентов среднего профессионального образования. Одобрено Учебно-методическим Советом университета Составитель Крайнева Р. К. © Крайнева Р. К., составление, 2013 © Поволжский государственный Тольятти...»

«Эталон ГС ГА Ту-134А ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ КНИГА IX НАЗЕМНОЕ ОБОРУДОВАНИЕ 5, ЗАО АНТЦ ТЕХНОЛОГ, 2001 МИНИСТЕРСТВО ГРАЖДАНСКОЙ АВИАЦИИ Ту-134А ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ КНИГА IX НАЗЕМНОЕ ОБОРУДОВАНИЕ ©, ЗАО АНТЦ ТЕХНОЛОГ, 2001 МИНИСТЕРСТВО ГРАЖДАНСКОЙ АВИАЦИИ Эталон ГС ГА Ту- 134 А ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ КНИГА IX НАЗЕМНОЕ ОБОРУДОВАНИЕ D, ЗАО АНТЦ ТЕХНОЛОГ, 2001 1тГ\ = TY-134A ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ КН ИГА IX НАземное ОБОРУДОВАНА -€*а*э Сверен с s* Эталоном ••?-! sexHonor iWXHoaor...»

«Быстрые деньги Система обучения и оценки продавцов-консультантов салонов связи Омск, 2009 ББК 88.4 УДК 159.9:339.158 Семенов М.Ю. Быстрые деньги: Система обучения и оценки продавцов-консультантов салонов связи. — Омск, 2009. — 166 с.: ил. Как грамотно вложить деньги в обучение персонала и получить в результате реальный, измеримый эффект? Как построить систему развития торгового персонала без необходимости постоянных инвестиций? В книге описан четырехлетний опыт автора по оценке и обучению...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.