WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 56 | 57 || 59 | 60 |   ...   | 93 |

«ТРУДЫ XI МЕЖДУНАРОДНЫХ КОЛМОГОРОВСКИХ ЧТЕНИЙ Ярославль 2013 УДК 51; 51:372.8; 51(091) Печатается по решению редакционноББК 22.1 я434 издательского совета ЯГПУ им. К. Д. ...»

-- [ Страница 58 ] --

С Крыловым М.А. Шателен познакомился, когда сам приехал учиться в Петербург. Через ряд лет он узнал, как относился к Крылову де-Колонг, найдя его письмо от 1 марта 1886 г. к председателю Совета Русского технического общества, в котором он высоко оценивал Крылова. Рекомендуя провести некоторую экспертизу вместо себя Крылову, де-Колонг писал: “Этот офицер уже 1,5 лет сотрудничает вместе со мною и в области своей деятельности представил несколько капитальных трудов, которые в скором времени будут напечатаны” и указал его адрес: “Васильевский остров, 13-я линия, д. 24, кв. 9” [4].

В то же время де-Колонг привлёк его к работам по Эмеритальным (пенсионным) кассам.

Эти кассы были основаны М.В. Остроградским и В.Я. Буняковским для Морского ведомства.

Периодически проходили поверки их состояния. Так, в 1877-1878 гг. работала третья комиссия, для которой все вычисления выполнял ученик Буняковского капитан-лейтенант де-Колонг, много лет посвятивший этой работе, даже став генерал-майором. В четвертой комиссии в 1882-1884 гг.

работу выполнял Крылов под руководством де-Колонга [5, с. 65]. Эти навыки ему пригодились:

так, в 1889 г. он совместно с Вацлавом Модестовичем Сухомелем, тоже мичманом, выполнили такую работу для эмеритальной кассы Горного института. Их работа была напечатана [6]. По ней видно, что они не только произвели нужные вычисления, но и дали советы как надо действовать 232 Глава 4. История и философия математики и математического образования в том или ином случае. Здесь были нужны не только расчёты, но и здравый смысл. Такую же работу они делали и впоследствии, т.к. она хорошо оплачивалась, но изданы только две – эта и для служащих Волжско-Камского банка. Приведу выдержку из письма отца Крылова от июня 1891 г.: “Друг Алексей! Сегодня я видел Сухомеля; он мне сказал, что к нему присылали присяжные поверенные по делу о вычислении кассы. Сухомель об условиях не говорил, но сказал, что вы за работу возьмётесь, и велел собирать им статистический материал” [3].

Во время работы у де-Колонга Крылов в 1888 г. выполнил авторизованный перевод статьи французского военного инженера Э. Гийю. В этой статье автор предлагает новый способ проектирования шара на плоскость и даёт решение этого вопроса в эллиптических функциях. Значит, этот математический аппарат он уже изучил [7, с. 101]. Это была первая опубликованная работа Крылова.

Наступает пора для поступления в Морскую академию, но для этого требовалось иметь производственную практику, и Крылов устраивается на работу на Франко-русский кораблестроительный завод, где не только знакомится с новыми работами, но и пишет статьи по корабельному делу. В 1888 г. он был принят на кораблестроительное отделение Николаевской морской академии. Среди всех преподавателей он особо отмечал Александра Николаевича Коркина (1861-1908), читавшего там 30 лет курс дифференциального и интегрального исчислений. Коркин также обратил внимание на способного ученика и при уходе из академии он передал ему чтение своего курса. Крылов записал текст лекций, которые он слушал в 1888-1890 гг., хотя курс Коркина был издан в литографированном виде. Дело в том, что Коркин диктовал ученикам свои лекции (ученики их называли “интегральной диктовкой”), а потому не мог сказать всего, что имелось в его книге.

В 1890 г. Крылов окончил Академию также с отличием и с занесением на мраморную доску почёта. По рекомендации Коркина, ушедшего из Академии по состоянию здоровья, Крылову поручили читать курс дифференциального и интегрального исчисления. Крылов читал разные курсы, для которых издавал пособия, например, “Учебник сферической тригонометрии для мореходных учебных заведений” в 1899 г. Читал он и курс начертательной геометрии, но пособия не составил. Позднее, в 1935 г. выйдет его курс “Сферическая тригонометрия Основные сведения, необходимые для приложения к морской артиллерии и технике”.

Крылов посещал “Коркинские субботы”: так называли лекции, которые читал А.Н. Коркин на дому для всех желающих учиться новому или получить совет Часто такие встречи проходили на квартире Александра Ивановича Садовского (1859-1921), потому что Коркин и он жили в одном доме на одной лестнице, и у него было просторнее. (Крылов высоко ценил Садовского как физика и как преподавателя, лекции которого он слушал в Академии.) Коркин читал курс уравнений в частных производных, что не входило в программу Академии. Об этих лекциях написано в книге Е.П. Ожиговой [8]. По сведениям М.А. Шателена, группу для слушания этих лекций организовывал Крылов. После смерти Коркина Крылов унаследовал многое из научных бумаг Коркина, в том числе записи об уникурсальных кривых, об абелевых интегралах.

После окончания Академии Крылов стал посещать Университет в качестве вольнослушателя.

Он приходил на лекции, читавшихся на третьем и четвёртым курсах, а их читали А.А. Марков, А.Н. Коркин и др. В частности, Крылов прослушал лекции Д.А. Граве по теории поверхностей.

Также он ходил на лекции по физике, которые читал О.Д. Хвольсон, которого он высоко ценил.

Что касается своего основного курса по дифференциальному и интегральному исчислению, то Крылов издал три курса по этой тематике: для кораблестроительного отделения Политехнического института в 1906 г., для Морской академии в 1909 г. и для студентов заочного обучения в 1930-ом и 1931-ом годах.

Остановлюсь на самом объёмном (450 стр.) печатном курсе 1909 г. [9]. Как пишет Крылов в предисловии, этот курс нужен “для усвоения астрономии, теории корабля, электротехники и теоретической механики. В 1907 г. программу Морского корпуса было решено увеличить объм курса в связи с тем, что был добавлен ещё один год для обучения, а значит, и увеличено количество часов для преподавания математики. Приведу кратко структуру этого учебника.



Первая часть – дифференциальное исчисление. Глава 1: “Введение”, в которой изложено понятие о функции и их классификации, а также теория пределов. Глава 2: “Определение производной Ермолаева Н.С. Академик А.Н. Крылов (к 150-летию со дня рождения). Путь в науку.

Математические труды и дифференциала функции одной переменной и правила дифференцирования”, а в конце главы он даёт ряд примеров для практики, которые ему предоставил профессор К.А. Поссе. Короткая глава 3 – “Дифференцирование функций нескольких переменных”, также с примерами для решения. Небольшая глава 4 отведена дифференцированию неявных функций, а в столь же краткой главе 5 изучаются производные высших порядков. Весь этот материал занимает 128 страниц.

Замечу, что в рукописном виде этот курс имеется в Архиве [10]. В нём Крылов рекомендует задачник Frnt. “Сборник упражнений по исчислению бесконечно малых” Ф.Ж. Френэ (1816-1900) с решениями многих задач, был трижды переведён на русский язык. Перевод одного из них был издан в 1885 г. Д.И. Крюковым, известным как шахматист, а служил он в Петербурге в Главном интендантском управлении. Задачи в сборнике были разные, часто трудные и интересные, но не всегда по теме курса Крылова. Так что в изданном курсе об этом задачнике речи нет.

В главе 6 появляется раздел – “О рядах”, как числовых, так и степенных, а в главе 7 рассматривается разложение функций в ряды Тейлора и Маклорена., причём здесь появляется теорема Ролля, и лишь потом к этому прилагается глава с разложениями функций ряды, где последние два параграфа отведены биному Ньютона. Автор поясняет каждый вывод на простых примерах.

Крылов написал: “Определение основных понятий и многие выводы взяты мною целиком из курса, который в течение многих лет читал в Николаевской Морской академии покойный профессор А.Н. Коркин и лишь необходимость сообразоваться с назначением этой книги – служить учебником для кадет – заставляла меня отходить от способов изложения моего незабвенного учителя”.

Что касается курса для заочного обучения, то он оформлен в виде отдельных писем. Их было 14: первые семь по дифференциальному исчислению в 1930 г., остальные – по интегральному исчислении и решению простейших дифференциальных уравнений – в 1931 г. За основу Крылов взял свой курс 1908 г. Каждое письмо начиналось так: “ТОВ. ЗАОЧНИК!”. Далее идёт некоторое вступление по теме, затем основной текст и примеры Отличие от курса 1906 г. в том, что здесь появилась “теорема Лагранжа, из которой следует теорема Ролля”.

В 1938 г. Крылов напечатал в “Вестнике Академии наук” статью “О курсе и постановке преподавания во втузах”. Основная мысль состоит в том, что при составлении учебных курсов надо хорошо знать, какие именно разделы математики будут нужны будущим техникам, а какие – инженерам. Интересно высказывание Крылова о сходимости рядов. Написав общие члены двух рядов: 1) 1000 и 2) 1000n, он говорит, что математик скажет, что 1-ый сходится, а 2-ой расхоn!

дится, тогда как для астронома будет ровно наоборот, и добавляет, что оба вывода законны, но для разных целей (астрономы имеют дело со временем, которое исчисляется от 20 тысяч до трёх миллионов лет).

В 1916 г. Крылов напечатал статью “Учение о пределах как оно изложено у Ньютона” в издании Педагогического музея военно-учебных заведений. Эта организация проводила регулярно заседания по учебному процессу. В 1915-1916 гг. в отделе математики этого учреждения были заслушаны доклады по вопросам преподавания теории пределов и сопутствующих понятий. Стоял вопрос о месте этих понятий в курсе геометрии в средней школе. Это было вызвано тем, что эти основные понятия подверглись критике. Свой взгляд высказал и Крылов: “Такое направление преподавания, как мне кажется, а я в этом еретик, уместно в университете, да и то на старших курсах, а не для начинающих, и совершенно неуместно в средней школе, а в особенности в технических, прикладных”.

Затем он приводит аргументы в защиту своих взглядов. Далее он печатает текст И. Ньютона об определении понятия предела, где всё построено на неравенствах. Как раз в 1915 г. Крылов окончил перевод первой части “Начал” Ньютона. Вторая часть была напечатана в 1916 г. (Добавим, что Крылов не раз делал сообщения в этом учреждении: так, например, он сделал доклад о решении одной геометрической задачи Декарта, которая имелась в задачнике Френэ.) Уже в 1917 г. в “Журнале министерства путей сообщения. Новая серия” появилась статья латиниста А.З. Чекалова с резкой критикой перевода “Начал”. В следующем сентябрьском номере вышла рецензия известного философа и редактора этого издания Э.Л. Радлова, который выступил в защиту труда Крылова. Он писал что если и есть какие-то недочёты в переводе Крылова, то они несущественны, а перевод “Начал” “будет приветствоваться и в русских философских 234 Глава 4. История и философия математики и математического образования кругах”. Критика со стороны математиков не прекращалась (П.А. Некрасов, С.А. Богомолов, Д.Д. Мордухай-Болтовской), а позднее уже по философским взглядам Ньютона занимался и академик Н.Н. Лузин, обсуждая некоторые вопросы с Крыловым, но без какой-либо критики.

Крылов перевёл на русский язык не только труды Ньютона, но и работы Эйлера, Лагранжа и некоторых других выдающихся математиков.

В 1890 г академик В.Г. Тихомандрицкий основал Санкт-петербургское математическое общество, но 5 июня 1892 г. он скончался. Председателем был избран профессор Ю.В. Сохоцкий.

Вопрос об уставе этого общества рассматривался ещё на заседании 17 января 1891 г. и были высказаны разные замечания, в том числе и Крыловым. [11]. Видимо, были разногласия, так что устав был принят значительно позднее, в 1893 г. Это было первое упоминание фамилии Крылова в протоколах общества. (Присутствовавших на заседании в протоколах не указывали, только докладчиков.) Можно предположить, что об открытии Общества Крылову сообщил П.А. Шифф, артиллерист и математик.



Pages:     | 1 |   ...   | 56 | 57 || 59 | 60 |   ...   | 93 |
 



Похожие работы:

«Книга кандидата философских наук В. В. Коника посвящена критическому анализу вероучения, социальной доктрины и миссионерской деятельности организации свидетелей Иеговы. На большом фактическом материале автор показал несостоятельность теоретических рассуждений бруклинских богословов, антикоммунистическую сущность их социальных взглядов. Основываясь на многолетнем личном опыте работы среди верующих, автор показывает необходимость повышения эффективности атеистического воспитания среди...»

«В ОССОЗДАНИЕ РЕЛИГИИ: НЕОЯЗЫЧЕСТВО В АРМЕНИИ Юлия Антонян Юлия Юрьевна Антонян. Адрес для переписки: Отделение культурологии исторического факультета Ереванского государственного университета, 375001, Армения, г. Ереван, ул. Абовяна, 52. yulyusha@yahoo.com. Статья написана на основе полевых исследований, проведенных в 2005 и 2007– 2009 годах. Процесс реактуализации и распространения религиозных и мистических учений, направлений и сект в перестроечной и потсоветской Армении можно условно...»

«Аннотация Автор книги, известный американский исследователь и историк джаза, знаком советскому читателю по своей работе Становление джаза. В монографии, посвященной творчеству выдающегося американского музыканта Луи Армстронга (1900-1971), автор ярко и профессионально рассказывает о пути становления своего героя, отказываясь от традиционной для прессы США романтизации суперзвезды. Дж. Коллиер показывает, как коммерциализация культуры, расовая дискриминация помешали полному осуществлению...»

«Елена Грицак Данная книга посвящена истории медицины: традиционной, народной и научной. С ее помощью читатель узнает о том, как на заре человечества зародилось целительство, каким образом первобытные люди определяли болезни и чем лечили их. Страница за страницей ему откроются различные тайны древней науки врачевания, прошедшей долгий путь становления и развития и вобравшей в себя многовековой опыт различных народов, населяющих планету Земля. Елена Грицак Популярная история медицины Введение...»

«Владимир МЕЗЕНЦЕВ ОБЫЧНОЕ В НЕОБЫЧНОМ Природа – единственная книга, каждая страница которой полна глубокого содержания. Гёте Мир полон загадок Счастлив тот, кому довелось знать причины явлений? Вергилий Странное. Непонятное. Загадочное. Необыкновенное. Необъяснимое. Диковинное. Непостижимое. Чудесное. Богат набор слов, которыми мы отмечаем неведомое, не виданное ранее в природе. Безграничная в своих проявлениях, она не устает поставлять нам новое – то, что восхищает, удивляет, поражает наше...»

«1 Титул 2 Титул ФОНД ПЕРВОГО ПРЕЗИДЕНТА РОССИИ Б.Н. ЕЛЬЦИНА Общественный совет Уроки девяностых А. Безбородов, Н. Елисеева, В. Шестаков Перестройка и крах СССР. 1985–1993 Санкт-Петербург 2010 3 Титул УДК 947 ББК63.3(2)635+63.3(2Рос)-я7 Б39 А. Безбородов, Н. Елисеева, В. Шестаков. Б39 Перестройка и крах СССР. 1985–1993. – СПб.: Норма, 2010. – 216 с. ISBN 978-5-87857-162-3 Книга А. Безбородова, Н. Елисеевой и В. Шестакова Перестройка и крах СССР. 1985–1993 позволяет с позиции исторической правды...»

«Выборка информации о меннонитах из ниже представленной книги сделана с разрешения авторов данной книги. ДАВЛЕКАНОВСКИЙ РАЙОН РЕСПУБЛИКИ БАШКОРТОСТАН: из истории административно-территориального деления и отдельных населенных пунктов М.М. Гатауллина, М.З. Мухаметзянов, Р.М. Мухаметзянова-Дуггал Уфа: Дизайн Полиграф Сервис, 2011. – 167 с. (Библиотечка Башкирской охотничьей газеты) ПРЕДИСЛОВИЕ Предлагаемая вниманию читателей книга посвящена истории административно-территориального устройства...»

«Болеслав МАТУШЕВСКИЙ ЖИВАЯ ФОТОГРАФИЯ: ЧЕМ ОНА ЯВЛЯЕТСЯ И ЧЕМ ДОЛЖНА СТАТЬ Имя Болеслава Матушевского (1856–1944(?))—автора одной из первых книг о кинематографе—в нашей стране до сих пор почти никому не известно. Деятельность этого польского фотографа и хроникера становилась предметом изучения историков-архивистов и некоторых киноведов (достаточно назвать имена С.С.Гинзбурга и Я.К.Маркулан). Но только в статье Владимира Магидова Итоги кинематографической и научной деятельности Б. Матушевского в...»

«THE PHILOSOPHICAL AGE ALMANAC 7 BETWEEN PHYSICS AND METAPHYSICS: SCIENCE AND PHILOSOPHY To the 275 anniversary of the Academy of Sciences St. Petersburg 1998 Санкт-Петербургский научный центр Санкт-Петербургское отделение Института человека РАН Санкт-Петербургский филиал Института истории естествознания и техники РАН Международная кафедра философии и этики (ЮНЕСКО) в Санкт-Петербурге _ Санкт-Петербургский Центр истории идей ФИЛОСОФСКИЙ ВЕК АЛЬМАНАХ 7 МЕЖДУ ФИЗИКОЙ И МЕТАФИЗИКОЙ: НАУКА И...»

«СВИДЕТЕЛЬСТВА О БЛАГОДАТНОМ ДАРЕ ПРОЗОРЛИВОСТИ В ЖИЗНЕОПИСАНИЯХ И ТВОРЕНИЯХ СВЯТОГОРЦЕВ И ПСЕВДОСТАРЧЕСТВО НАШИХ ДНЕЙ Диссертация на соискание ученой степени кандидата богословия студента IV курса ЯРОВОГО Владислава Научный руководитель: протоиерей Владимир САВЕЛЬЕВ Киев 2007 Введение Наступил и стремительно движется вперед XXI век. Будет он или нет последним в истории человечества, знает один лишь Бог. Позади у тех, кто живет на, так называемом, постсоветском пространстве и составляет наших...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.