WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 10 |

«БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ Практикум Рекомендовано в качестве практикума Редакционно-издательским советом Томского политехнического университета Издательство ...»

-- [ Страница 5 ] --

Шар молочного стекла (ШМ) – для ламп до 1000 Вт; предназначен для нормальных помещений с большим отражением потолков и стен (помещения точной сборки, конструкторские).

«Люцетта» (ЛЦ) – для ламп до 300 Вт; предназначен для тех же помещений, что и ШМ.

Глубокоизлучатель со средней концентрацией потока (ГС) – для ламп 500, 1000 Вт; устойчив в условиях сырости и среды с повышенной химической активностью.

Основные характеристики некоторых светильников Размещение светильников в помещении определяется следующими параметрами, м (рис. 4.1):

Н – высота помещения;

hc – расстояние светильников от перекрытия (свес);

hn = H - hc – высота светильника над полом, высота подвеса;

hpп – высота рабочей поверхности над полом;

h = hn - hpп – расчётная высота, высота светильника над рабочей поверхностью.

Для создания благоприятных зрительных условий на рабочем месте, для борьбы со слепящим действием источников света введены требования ограничения наименьшей высоты светильников над полом (табл. 5 и 6);

L – расстояние между соседними светильниками или рядами (если по длине (А) и ширине (В) помещения расстояния различны, то они обозначаются LA и LB), l – расстояние от крайних светильников или рядов до стены.

Оптимальное расстояние l от крайнего ряда светильников до стены рекомендуется принимать равным L/3.

Наименьшая допустимая высота подвеса светильников Двухламповые светильники ОД, ОДР, ОДО, ОДОР при одиночной установке или при непрерывных рядах из одиноч- 3, Двухламповые светильники ОД, ОДР, ОДО, ОДОР при не- 4, прерывных рядах из сдвоенных светильников Наименьшая допустимая высота подвеса светильников Тип светильниВ матированной В прозрачной кол- В прозрачной колка Наилучшими вариантами равномерного размещения светильников являются шахматное размещение и по сторонам квадрата (расстояния между светильниками в ряду и между рядами светильников равны) (рис.

4.2).

Рис. 4.2. Схема размещения светильников в помещении для ламп накаливания При равномерном размещении люминесцентных светильников последние располагаются обычно рядами – параллельно рядам оборудования (рис. 4.3). При высоких уровнях нормированной освещённости люминесцентные светильники обычно располагаются непрерывными рядами, для чего светильники сочленяются друг с другом торцами.

Рис. 4.3. Схема размещения светильников в помещении для люминесцентных Интегральным критерием оптимальности расположения светильников является величина = L/h, уменьшение которой удорожает устройство и обслуживание освещения, а чрезмерное увеличение ведёт к резкой неравномерности освещённости. В табл. 4.7 приведены значения для разных светильников.

Наивыгоднейшее расположение светильников Расстояние между светильниками L определяется как:

Необходимо изобразить в масштабе в соответствии с исходными данными план помещения, указать на нём расположение светильников (см. пример, рис. 4.4) и определить их число.

4. ВЫБОР НОРМИРУЕМОЙ ОСВЕЩЁННОСТИ

Основные требования и значения нормируемой освещённости рабочих поверхностей изложены в СНиП 23-05-95. Выбор освещённости осуществляется в зависимости от размера объёма различения (толщина линии, риски, высота буквы), контраста объекта с фоном, характеристики фона. Необходимые сведения для выбора нормируемой освещённости производственных помещений приведены в табл. 4.8.

Нормы освещённости на рабочих местах производственных помещений при искусственном освещении (по СНиП 23-05-95) Характеристика зриНаименьший размер тельной работы

5. РАСЧЁТ ОБЩЕГО РАВНОМЕРНОГО ОСВЕЩЕНИЯ

Расчёт общего равномерного искусственного освещения горизонтальной рабочей поверхности выполняется методом коэффициента светового потока, учитывающим световой поток, отражённый от потолка и стен.

Световой поток лампы определяется по формуле:

где Ен – нормируемая минимальная освещённость по СНиП 23-05лк; S – площадь освещаемого помещения, м2; Kз – коэффициент запаса, учитывающий загрязнение светильника (источника света, светотехнической арматуры, стен и пр., т. е. отражающих поверхностей), наличие в атмосфере цеха дыма, пыли (табл. 4.9); Z – коэффициент неравномерности освещения, отношение Еср/Еmin. Для люминесцентных ламп при расчётах берётся равным 1,1; N – число ламп в помещении; – коэффициент использования светового потока.

Коэффициент использования светового потока показывает, какая часть светового потока ламп попадает на рабочую поверхность. Он зависит от индекса помещения i, типа светильника, высоты светильников над рабочей поверхностью h и коэффициентов отражения стен с и потолка n.

Индекс помещения определяется по формуле:

Коэффициенты отражения оцениваются субъективно (табл. 4.10).

Значения коэффициента использования светового потока светильников для наиболее часто встречающихся сочетаний коэффициентов отражения и индексов помещения приведены в табл. 4.11 и 4.12.

Рассчитав световой поток Ф, зная тип лампы, по табл. 1-3 выбирается ближайшая стандартная лампа и определяется электрическая мощность всей осветительной системы. Если необходимый поток лампы выходит за пределы диапазона (–10 +20 %), то корректируется число светильников либо высота подвеса светильников.

Коэффициент запаса светильников с люминесцентными лампами Значение коэффициентов отражения потолка и стен Коэффициенты использования светового потока светильников с люминесцентными лампами Коэффициенты использования светового потока светильников с лампами накаливания, % Дано помещение с размерами: лина А = 24 м, ширина В = 12 м, высота Н = 4,5 м. Высота рабочей поверхности hрп = 0,8 м. Требуется создать освещенность Е = 300 лк.

Коэффициент отражения стен Rc = 30 %, потолка Rn = 50 %. Коэффициент запаса k = 1,5, коэффициент неравномерности Z = 1,1.

Рассчитываем систему общего люминесцентного освещения.

Выбираем светильники типа ОД, = 1,4.

Приняв hс = 0,5 м, получаем h = 4,5-0,5-0,8 = 3,2 м;

Размещаем светильники в три ряда. В каждом ряду можно установить 12 светильников типа ОД мощностью 40 Вт (с длиной 1,23 м), при этом разрывы между светильниками в ряду составят 50 см. Изображаем в масштабе план помещения и размещения на нем светильников (рис.

4). Учитывая, что в каждом светильнике установлено две лампы, общее число ламп в помещении N = 72.

Находим индекс помещения По табл. 4.11 определяем коэффициент использования светового потока:

Определяем потребный световой поток ламп в каждом из рядов:

По табл. 1 выбираем ближайшую стандартную лампу – ЛТБ 40 Вт с потоком 2850 лм. Делаем проверку выполнения условия:

Получаем Определяем электрическую мощность осветительной установки Рис. 4.4. План помещения и размещения светильников с люминесцентными

СПИСОК ЛИТЕРАТУРЫ

1. Долин П.А. Справочник по технике безопасности. – М.: Энергоатомиздат, 1982. – 800 с.

2. Кнорринг Г.М. Осветительные установки. – Л.: Энергия, 1981. – 3. Справочная книга для проектирования электрического освещения / Под ред. Г.М. Кнорринга. – СПб.: Энергоатомиздат, 1992. – 448 с.

4. СНиП 23-05-95. Естественное и искусственное освещение.

5. ГОСТ 6825-91. Лампы люминесцентные трубчатые для общего освещения.

6. ГОСТ 2239-79. Лампы накаливания общего назначения.

РАБОТА 5. РАСЧЁТ УСТРОЙСТВА ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ

Искусственное групповое защитное заземляющее устройство (УЗЗ) может состоять из вертикальных электродов и горизонтально расположенной соединительной полосы, соединенных между собой сваркой или болтовым соединением. Для обеспечения надежной защиты от электропоражения устройство заглубляется в земле на 0,7-0,8 м. Это необходимо, так как верхний слой земли промерзает и высыхает при снижении и повышении сезонных колебаний температуры, что может приводить к возрастанию удельного сопротивления растеканию тока в земле.

Для уменьшения размеров и экономических затрат на сооружение УЗЗ рекомендуется использовать сопротивление естественных заземлителей. В качестве которых можно использовать: свинцовые оболочки кабелей; инженерные сооружения, проложенные в земле, кроме трубопроводов для горючих жидкостей; грозозащита опор линий электропередачи.

В данной работе расчет УЗЗ выполнен, исходя из допустимого, согласно ПУЭ, сопротивления заземлителя растеканию тока методом коэффициентов использования 1. Уточняются исходные данные.

2. Определяется расчетный ток замыкания на землю.

3. Определяется требуемое сопротивление растеканию заземляющего устройства.

4. Определяется требуемое сопротивление искусственного заземлителя;

5. Выбирается тип заземлителя и составляется предварительная схема (проект) заземляющего устройства, т. е. размещаются на плане установки принятые для сооружения УЗЗ электроды и заземляющие проводники;

6. Уточняются параметры УЗЗ.

Для расчета заземления необходимы следующие сведения:

1) характеристика электроустановки – тип установки, виды основного оборудования, рабочие напряжения, способы заземления нейтралей трансформаторов и генераторов и т. п.;

2) план электроустановки с указанием основных размеров и размещения оборудования;

3) формы и размеры электродов, из которых предполагается соорудить проектируемый групповой заземлитель, а также предполагаемая глубина погружения их в землю. Вертикальные (стержневые) электроды, забиваемые вертикально в землю, выполнены обычно из стальных труб диаметром 5-6 см с толщиной стенки не менее 3,5 мм или из угловой стали с толщиной полок не менее 4 мм (обычно от 40х40 до 60х60 мм) длиной 2,5-3,0 м. Широко для стержневых электродов применяется прутковая сталь диаметром не менее 10 мм и длиной до 10 м.

Для горизонтальных электродов применяется полосовая сталь сечением не менее 4х12 мм и сталь круглого сечения диаметром не менее 6 мм;

4) данные измерений удельного сопротивления грунта на участке, где предполагается сооружение заземлителя, а также характеристика климатической зоны (в соответствии с табл. 5.1);

Удельные сопротивления грунта растеканию тока короткого замыкания 5) данные о естественных заземлителях: какие сооружения могут быть использованы для этой цели и сопротивление их растеканию, тока, полученные непосредственным измерением; если по каким-либо причинам измерение сопротивления естественного заземлителя произвести невозможно, должны быть даны сведения, позволяющие определить это сопротивление расчетом: Сопротивление естественных заземлителей можно вычислять по формулам, выведенным для искусственных заземлителей аналогичной формы (см. [1], табл.1-17), или специальным формулам, встречающимся в технической литературе. Например, сопротивление растеканию системы «грозозащитный трос – опоры» (при числе опор с тросом более 20) определяется приближенной формулой где, rоп – расчетное, т. е. наибольшее (с учетом сезонных колебаний) сопротивление заземления одной опоры, 0м; rт – активное сопротивление троса на длине одного пролета, 0м; nт – число тросов на опоре.

Для стального троса сечением s, мм2, при длине пролета, м, активное сопротивление, 0м, Поскольку на сопротивление естественных заземлителей влияют многие факторы, которые не учитываются этими формулами (наличие антикоррозийной изоляции на трубах или резиновых прокладок в стыках труб, различная глубина заложения протяженного заземлителя в земле и т. п.), указанные вычисления дают, как правило, очень большую ошибку. Поэтому сопротивления естественных заземлителей следует определять непосредственно измерениями. Если заземлители при этом находятся на глубине промерзания, то результат измерения умножается на коэффициент сезонности (см. табл. 5.2).



Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 10 |
 


Похожие работы:

«ИНДЕКС УДК 53.087;543.27.-8; 544; 621.37;681.2 ХИМИЧЕСКИЕ СЕНСОРЫ: КЛАССИФИКАЦИЯ, ПРИНЦИПЫ РАБОТЫ, ОБЛАСТИ ПРИМЕНЕНИЯ © Егоров А.А., Егоров М.А., Царева Ю.И. yegorov@kapella.gpi.ru Аннотация Представлен краткий обзор химических сенсоров. Дана их классификация, описаны принципы работы некоторых датчиков и области их применения. Особое внимание уделено электрохимическим сенсорам, биосенсорам и оптическим химическим сенсорам. Рассмотрены фундаментальные явления, лежащие в основе действия...»

«РАБОЧАЯ ПРОГРАММА дисциплины ЭКОЛОГИЯ Направление подготовки 110100 Агрохимия и агропочвоведение По профилю 110100.62 Агроэкология Квалификация (степень) бакалавр сельского хозяйства Форма обучения очная Орел 2011 год Составители: Игнатова Г. А., к.с.-х.н. 20г. Рецензент Степанова Е. И., к.с-х. наук, доцент 20г. Программа разработана в соответствии с ФГОС ВПО по направлению 110100 Агрохимии и агропочвоведения и примерной учебной программы Экологии, рекомендуемой для профиля подготовки...»

«ДОПОЛНИТЕЛЬНОЕ ХИМИЧЕСКОЕ ОБРАЗОВАНИЕ М.1 (Дисциплина по выбору) УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ Направление подготовки: 050100.68 Педагогическое образование, магистерская программа Химическое образование уровень (квалификация) магистр Красноярск 2011 Рабочая программа составлена к.х.н., доцентом Булгаковой Н.А. Рабочая программа обсуждена на заседании кафедры химии 8 сентября 2011 г. Протокол №1. Заведующий кафедрой Л.М. Горностаев Одобрено научно-методическим советом 27 ноября 2011 г....»

«Оглавление БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ. 5 Комплексная безотходная химическая переработка древесины Разработка технологии и аппаратно-программного комплекса дешифрирования земель лесного фонда по материалам космической съемки Обоснование параметров транспортной фазы лесозаготовительного производства на основе концепции пакетно-контейнерных перевозок Стекла для оптического волокна Разработка научных основ и технологических принципов получения композитов с применением...»

«ЛИТОЛОГИЯ НЕФТЕГАЗОНОСНЫХ ТОЛЩ Допущено Государственным комитетом СССР по народному образованию в качестве учебного пособия для студентов вузов, обучающихся по специальности Геология нефти и газа Москва Недра 1991 ББК 26.3 Б 90 УДК 553.984 Р е ц е н з е н т ы : д-р геол.-минер. наук В.Г. Кузнецов, кафедра петрографии и минералогии Университета дружбы народов им. П. Лумумбы 1804060200 - 240 © Б.К. Бурлин, А.И. Конюхов 043(01) - 91 Е.Е.Карнюшина, 1991 ISBN 5-247-01495-2 ПРЕДИСЛОВИЕ С осадочными...»

«Э. И. КОЛЧИНСКИЙ, А. В. КОЗУЛИНА БРЕМЯ ВЫБОРА: ПОЧЕМУ В. И. ВЕРНАДСКИЙ ВЕРНУЛСЯ В СОВЕТСКУЮ РОССИЮ?* О людях речь идет, а люди Богов не сами ли творят? А. Твардовский Феномен В. И. Вернадского, выявленный А. В. Лапо [1; 2], состоит и в том, что уже более 30 лет по экспоненте растет интерес к его жизни, научному творчеству и общественно-политической деятельности. В конце 60-х гг. взрыв публикаций о биогеохимических трудах Вернадского был вскоре дополнен — под влиянием книг И. И. Мочалова [3; 4]...»

«Персоны и события Январь 02 января 90 лет со дня рождения Айзека Азимова (1920-1992) Американский писатель-фантаст, биохимик, популяризатор науки. Учился в Колумбийском университете. Преподавал в Бостонском университете. Автор ок. 500 произведений. Писал также научно-популярные книги о проблемах естествознания, истории, техники. 04 января 300 лет со дня рождения Перголези Джованни Баттиста (1710-1736) Итальянский композитор, представитель неаполитанской оперной школы. Учился в одной из...»

«М.Г.РОМАНЦОВ А.Л.КОВАЛЕНКО ИНДУКТОР ИНТЕРФЕРОНА - ЦИКЛОФЕРОН ИТОГИ И ПЕРСПЕКТИВЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ САНКТ-ПЕТЕРБУРГ 2007 Индукторы интерферона. Общие положения Индукторы интерферона являются веществами природного и/или синтетического происхождения, способные индуцировать в организме человека продукцию интерферона. Таблица 1. Индукторы интерферона, пригодные для клинического применения Химическая природа Препарат А.Синтетические соединения 1.Низкомолеклярные Флуорены, Амиксин акриданоны...»

«ИЗДАТЕЛЬСТВО московского УНИВЕРСИТЕТА 1985 УДК 631. Орлов Д. С. Химия почв: Учебник. — М.: Изд-во Моск. ун-та, 1985. — 376 с. ил. В учебнике последовательно излагаются вопросы истории химии почв, ее ис­ пользования в практике сельского хозяйства, химические свойства и состав глав­ нейших типов почв, ведущие химические процессы и химические равновесия в поч­ вах, фундаментальные законы ионообменной способности почв, формирования кислот­ ности и щелочности, окислительно-восстановительных режимов....»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.