WWW.KNIGI.KONFLIB.RU

 
<< HOME
CONTACTS

Pages:     | 1 |   ...   | 16 | 17 || 19 |

.. .. ...

-- [ 18 ] --

.. . .: , 1966. 284 .

: / . .. ..

. .: , 2007. 278 .

.., .. . .: , 1986. 118 .

.. - // . 1968. 3. .

27-39.

.. . .: - . -, 1990. 325 .

.. .., .. . .: ., 2005. 558 .

.., .. // . 1967. 7. . 37-48.

.. : . . . . . ., 2002. 24 .

/ . .. . .: , 2002. 364 .

.. . .: - . -. 1983. 320 .

.. - . : , 1996, 291 .

.., , .., .., .., .. - , . , 1999. 404 .

.. - // . 1980. 1. . 33-43.

.. // . 1980. 1. . 21-32.

.., .., . .., .., .. / . . 4. . ., 2004. . 84 .., .., .. . .: - . -, 2005. 336 .

. . .: , 1984. 240 .

.., .., .., .. // . 1987. 7. . 16-24.

/ . .. . .: , 1975. 286 .

.. // . .: . - . .. , 2006. . 202-235.

.. - // . 1984. 1. . 107-113.

.. - - // . . 1962. . 76. . 55-61.

Allison, L.E., Scarseth G.D. A biological reduction method for removing free iron oxides from soils and colloidal clays // Am. Soc. Agron. J. 1942. V. 34. P.

616-623.

Balashova V.V., Zavarzin G.A. Anaerobic reduction of ferric iron by hydrogen bacteria // Microbiology 1980. V. 48. P. 635-639.

Barron V., Torrent J. Use of the Kubelka-Munk theory to study the influence of iron oxides on soil color // J. Soil Sci. 1986. V. 37. P. 499-510.

Barron V., Torrent J. Evidence for simple pathway to maghemite in Earth and Mars soils // Geochim. Cosmochim. Acta. 2002. V. 66. P. 499-510.

Benner S.G., Hansel C.M., Wielinga R.W., Barber T.M., Fendorf S. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions // Environ. Sci. Technol. 2002. V. 36. P. 1705-1711.

Bodegom P.M., Reeven J., Gon H.A.C.D. Prediction reducible soil iron content from iron extraction data // Biogeochemistry. 2003. V. 64. P. 231-245.

Breemen N. Lond-term chemical, mineralogocal, and morfological effects of iron-redox processe in periodically flooded soils // Iron in soils and clay minerals. NATO. Dordrecht: Reidel. 1988. P. 811-823.

Coates, J.D., Councell T., Ellis D.J., Lovley D.R. Carbohydrate xidation oupled to Fe(III) reduction, a novel form of anaerobic metabolism // Anaerobe.

1998. V. 4. P. 277-282.

Coates J.D., Ellis D.J., Blunt-Harris E.L., Gaw C.V., Roden E.E., Jovley D.R. Recovery of humic-reducing bacteria from a diversity of environments // Appl.

Environ. Microbiol. 1998. V. 64. 4. P. 1504-1509.

Coates J.D., Ellis D.J., Gaw C.V., Lovley D.R. Geothrix fermentans gen. nov., sp nov., a novel Fe(III)-reducing bacterium from a hydro-carbon-contaminated aquifer // Int. J. Syst. Evol. Microbiol. 1999. V. 49. P. 1615-1622.

Dong H., Kostka J.E., Kim J. Microscopic evidence for microbial dissolution of smectite // Clays Clay Minerals. 2003. V. 51. P. 502-512.

Dong H., Kukkadapu R.K., Fredrikson J.K., Zachara J.M., Kennedy D. W., Kostandarithes H. M. Microbial reduction of structural Fe(III) in illite and goethite // Environ. Sci. Technol. 2003. V. 37. P. 1268- Dyar M.D., Delaney J.S., Sutton S.R. Fe XANES spectra of iron-rich micas // European J. Mineral. 2001. V. 13. P. 1079-1098.

Dyar M.D., Gunter M., Delaney J.S., Lanzarotti S.R. Sutton S.R. Systematics in the structure and XANES spectra of pyroxenes, amphiboles, and micas as derived from oriented single crystals // Can. Mineralogist. 2002. V. 40. P. 1375-1393.



Ebinger M.H., Schulze D.G. Mn-substituted goethite and Fe-groutited synthesized at acid pH // Clays Clay Minerals. 1989. V. 37. N 2. P. 151-156.

Essaid H.I., Bekins B.A. Godsy E.M., Warren E. Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site // Water Resources Research. 1995. V. 31. 12. P. 3309-3327.

Favre F., Tessier D., Abdelmaula M., Genin J.M., Gates W.P., Boivin P. Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil // Eur. J. Soil Sci. 2002. V. 53. P. 175-183.

Fialips C-I., Huo D., Yan L., Wu J., Stucki J.W. Infrared study of reduced and reduced-reoxidized ferruginous smectite // Clays Clay Minerals. 2002. V. 50. P.

455-469.

Fischer W.R. Microbiological reactions of iron in soils // Iron in soils and clay minerals. NATO. Dordrecht: Reidel. 1988. . 715-748.

Gates W.P., Jaunet A.-M., Tessier D., Cole M. A. Wilkinson H.T., Stucki J.W. Swelling and texture of iron-bearing smectites reduced by bacteria // Clays Clay Minerals. 1998. V. 46. P. 487-497.

Gates W.P., Komadel P., Madejova J., Bujdak J., Stucki J.W., Kirkpatrick R.J. Electronic and structural properties of reduced-charge montmorillonites // Applied Clay Science. 2000. V. 16. P. 257-271.

Gates W.P., Slade P.G., Manceau A., Lanson B. Site occupancies by iron in nontronites // Clays Clay Minerals. 2002. V. 50. P. 223-239.

Jaisi D. P., Kukkadapu R.K., Eberl D.D., Dong H. Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite // Geochim. Cosmochim. Acta. 2005. V. 69. 23. P. 5429-5440.

Kampf N., Schwertmann U. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils // Geoderma.

1983. V. 29. 1. P. 27-39.

Khaled E.M., Stucki J.W. Fe oxidation state effects on cation fixation in smectites // Soil Science Society America J. 1991. V. 55. P. 550-554.

Komadel P., Lear P.R., Stucki J.W. Reduction and reoxidation of nontronite: Extent of reduction and reaction rates // Clays Clay Minerals. 1990. V. 38. P.

203-208.

Kostka J.E., Stucki J.W., Nealson K.H., Wu J. Reduction of structural Fe(III) in smectite by a pure culture of the Fe-reducing bacterium Shewanella putrefaciens strain MR-1 // Clays Clay Minerals. 1996. V. 44. P. 522-529.

Kostka J.E., Wu, J., Nealson, K.H., Stucki, J.W. Effects of microbial reduction on physical and chemical properties of clay minerals // Geochim. Cosmochim.

Acta. 1999. V. 63. P. 3705-3713.

Lear P. R., Stucki J. W. Intervalence electron transfer and magnetic exchange in reduced nontronite // Clays Clay Minerals. 1987. V. 35. P. 373-378.

Lear P. R., Stucki J. W. Magnetic properties and site occupancy of iron in nontronite // Clay Minerals. 1990. V. 25. P. 3-13.

Lewis D.G. Factors influencing the stability and properties of Green Rusts // Adv. GeoEcology. Reiskirhen, 1997. V. 30. P. 345-372.

Lin W. C., Coppi M. V., Lovley D. R. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor // Appl. Environ. Microbiol. 2004. V.

70. P. 2525-2528.

Liu C., Zachara J.M., Gorby Y.A., Szecsody J.E., Brown C.F. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefacience strain CN32 // Environ. Sci. Technol. 2001. V. 35. P. 1385-1393.

Lovley D.R. Organic matter mineralization with the reduction of ferric iron: a review // Geomicrobiology J. 1987. V. 5. 3/4. P. 375-399.

Lovley D.R. Reduction of iron and humics in subsurfase environments // Subsurfase Microbiology and Biogeochemistry / Eds. J.K. Fredrickson, M. Fletcher.

2001. P. 193-217.

Lovley D. R., Blunt-Harris E. L. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction // Appl. Environ. Microbiol. 1999.

V. 65. P. 4252-4254.

Lovley D.R., Coates J.D., Blunt-Harris E.L., Phillips E.J.P., Woodward J.C. Humic substances as electron acceptors for microbial respiration // Nature. 1996. V.

382. P. 445-448.

Lovley D.R., Phillips E.J.P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese // Appl. Environ. Microbiol. 1988. V. 4. P. 1472-1480.

Lovley D.R., Fraga J.L., Blunt-Harris E.L., Hayes L.A. Phillips E.J.P., Coates J.D. Humic substances as a mediator for microbially catalyzed metal reduction // Acta Hydrochim. Hydrobiol. 1998. V. 26. 3. P. 152-157.

Lovley D.R., Holmes D.E., Nevin K.P. Dissimilatory Fe(III) and Mn(IV) Reduction // Adv. Microbial Physiology. 2004. V. 49. P. 219-286.

Luca V., Cardile C.M. Improved detection of tetrahedral Fe3+ in nontronite SWa-1 by Mossbauer spectroscopy // Clay Minerals. 1989. V. 24. P. 555-560.

Luu Y.-S., Ramsay J. A. Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source // W. J. Microb. Biotechnol. 2003. V. 19. P. 215McKeague J.A., Day J.H. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils // Can. J. Soil Sci. 1966. V. 46. P. 13Munch J.C., Ottow J.C. G. Preferential reduction of amorphous to crystalline iron oxides by bacterial activity // Soil Science. 1980. V. 129. P. 15-21.

Murad E., Fischer W.R. The geobiochemical cycle of iron // Iron in soils and clay minerals. NATO. Dordrecht: Reidel. 1988. P. 1-18.

OReilly S.E., Watkins J., Furukawa Y. Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria // Geochemical Transactions. 2005. V. 6. 4. P. 67-76.

Pickering W.F. Metal ion speciation soil and sediments (a review) // Ore Geol. Rev. 1986. V. 1. 1. P. 83-146.

Ponnamperuma F.N. The chemistry of submerged soils // Advan. Agronomy. 1972. V. 24. P. 29-96.

Roden E.E. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics // Geoch. Cosm. Acta. 2004. V. 68. P. 3205-3216.

Roden E.E., Urrutia M.M. Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction // Geomicrobiology J. 2002. V. 19. P. 209-251.



Pages:     | 1 |   ...   | 16 | 17 || 19 |
 



:

. . , . . : . . ?* , ? . . . , . . [1; 2], , 30 , - . 60- . . . [3; 4]...

GIS WebServer AGRO ( 3.9) . 3.9 30 . . . .. . . . 2013 .00128-01 34 01 GIS WebServer AGRO Web-, . ...

, , , , . . . . , , . . . , , . . . . ...

40 . ( ). : , . . 1945 ., ...

- 250000 250401 2012 1 54 24 46 - , ...

2010 0 .. . . 2010 1 40.3 62 631.41 .. . .. 62. . .: . .. , 2010. ...

3 : 1. 2. 3. 1. , . n (A)n , , ...

H667-H91L7 1 1945 . . . Stanford University Press (Stanford University, California) Hoover Library of War, Revolution, and Peace, , -fe , , . . ...

. . 4 . , , , ( ,, ,...






 
<<     |    
2013 www.knigi.konflib.ru -

, .
, , , , 1-2 .