WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 28 | 29 || 31 | 32 |   ...   | 49 |

«Т. Г. Волова БИОТЕХНОЛОГИЯ Ответственный редактор академик И. И. Гительзон Рекомендовано Министерством общего и профессионального образования Российской Федерации в ...»

-- [ Страница 30 ] --

Метанотенки могут работать в режиме полного перемешивания, полного вытеснения, как анаэробные биофильтры или реакторы с псевдоожиженным слоем, а также в режиме контактных процессов. Простейшей конструкцией метанотенка является обычная бродильная яма в грунте с фиксированным объемом газа. Метанотенк представляет собой герметичную емкость, частично погруженную в землю для теплоизоляции и снабженную устройствами для дозированной подачи и подогрева сырья, а также газгольдером – емкостью переменного объема для сбора газа. Очень важным в конструкции метанотенков является обеспечение требуемого уровня перемешивания весьма гетерогенного содержимого аппарата. Вместе с тем известно, что максимальное выделение метана наблюдается в системах со слабым перемешиванием. Поэтому в отличие от аэробных процессов, требующих интенсивной аэрации и перемешивания, перемешивание при метаногенезе, главным образом, должно обеспечивать гомогенизацию бродящей массы, препятствовать оседанию твердых частиц и образованию твердой плавающей корки.

В зависимости от типа исходного материала, сбраживаемого в метанотенке, интенсивность процесса, включая скорость подачи и полноту переработки, а также состав образуемого биогаза существенно варьируют. При переработке жидких отходов животноводческих ферм соотношение между твердыми компонентами и водой в загружаемой массе должно составлять примерно как 1:1, что соответствует концентрации твердых веществ от 8 до 11 % по весу. Смесь материала обычно засевают ацетогенными и метанообразующими микроорганизмами из отстоя сброженной массы от предыдущего цикла или другого метанотенка. Температура и, следовательно, скорость протекания процесса зависят от вида используемого метанового сообщества. Для термофильных организмов процесс реализуется при 50–60°С, для мезофильных – при 30–40°С и около 20° – для психрофильных организмов. При повышенных температурах скорость процесса в 2–3 раза выше по сравнению с мезофильными условиями.

В ходе сбраживания органической массы на первой, так называемой «кислотной», фазе в результате образования органических кислот рН среды снижается. При резком сдвиге рН среды в кислую сторону возможно ингибирование метаногенов. Поэтому процесс ведут при рН 7.0–8.5.

Против закисления используют известь. Снижение рН среды является своеобразным сигналом, свидетельствующим о том, что процесс деструкции органики с образованием кислот закончен, то есть в аппарат можно подавать новую партию сырья для переработки. Оптимальное соотношение C:N в перерабатываемой органической массе находится в диапазоне 11–16:1. При изменении соотношения C:N в исходном материале в сторону увеличения содержания азота приводит к выделению аммиака в среду и защелачиванию.

Поэтому жидкие навозные отходы, богатые азотсодержащими компонентами, разбавляют резаной соломой или различными жомами.

Процессы, протекающие при метановом брожении, эндотермичны и требуют подвода энергии в виде тепла извне. Для подогрева загружаемого сырья и стабилизации температуры процесса на требуемом уровне обычно сжигают часть образуемого биогаза. В зависимости от температуры процесса количество биогаза, идущего на обогрев процесса, может достигать 30 % от объема получаемого.

Скорость поступления сырья на переработку или время удержания сырья в аппарате являются важными и контролируемыми параметрами. Чем интенсивнее процесс брожения, тем выше скорость загрузки и меньше время удержания. Однако важным условием стабильности процесса биометаногенеза, как и любой проточной культивационной системы, является сбалансированность потоков субстрата со скоростью размножения продуцента. Скорость подачи субстрата в метанотенк должна быть равной скорости роста бактерий метанового сообщества, при этом концентрация субстрата (по органическому веществу) должна быть стабилизирована на уровне не ниже 2 %. При уменьшении концентрации субстрата плотность бактериального сообщества снижается, и процесс метаногенеза замедляется. Наибольший выход продукции обеспечивается более высокой скоростью подачи субстрата, что в свою очередь требует стабилизации в аппарате достаточно высокой концентрации микроорганизмов. При этом возможны осложнения процесса, которые зависят от характера перерабатываемой органики. Если в перерабатываемом материале содержится много труднорастворимых веществ, в реакторе возможно накопление неразрушенных твердых веществ (до 80 % осадка). При больших количествах растворимой и легкодоступной органики образуется большое количество микробной биомассы в виде активного ила (до 90 % осадка), который трудно удержать в реакторе. Для снятия этих вопросов существует несколько решений. Возможно применение химического или ферментативного гидролиза исходного сырья, помимо его механического измельчения;

организация в метанотенке оптимального перемешивания подаваемого сырья с активным илом; перемешивание осадка и т.д.

Нормы загрузки сырья в существующих процессах метаногенеза колеблются в пределах 7–20 % объема субстрата от объема биореактора в сутки.

Цикличность процесса – 5–14 суток. Обычно время сбраживания животноводческих отходов составляет около 2-х недель. Растительные отходы перерабатываются дольше (20 суток и более). Наиболее трудны для переработки твердые отходы, поэтому их переработка более длительна.

В результате модификации и усовершенствования процесса можно существенно изменить скорость протока сырья через метанотенк. Цикличность процесса может быть сокращена до 5–15 часов при увеличении скорости загрузки до 150–400 % от общего суточного объема. Интенсифицировать процесс можно в результате использования термофильного сообщества и повышения температуры процесса, но это требует соответствующих дополнительных энергозатрат. Повысить эффективность метанового сообщества в метанотенке можно при использовании так называемых анаэробных биофильтров, или метанотенков второго поколения. В анаэробном биофильтре микроорганизмы находятся в иммобилизованном состоянии. В качестве носителя можно использовать галечник, керамзит, стекловолокно и др. В таких конструкциях становится возможным сбраживание материала при существенно меньшей величине текущей концентрации субстрата (0.5 % сухих веществ) с большими скоростями. Это позволяет повысить интенсивность деструкции отходов при уменьшении объемов реакторов.



Эффективно также пространственное разделение процесса в соответствии с характерной для него, с точки зрения химизма процесса, двухфазностью. Процесс реализуется в двух, соединенных последовательно реакторах. В первом аппарате происходит процесс анаэробного разложения органики с образованием кислот, окислов углерода и водорода (кислотная стадия). Параметры процесса брожения в аппарате задаются на уровне, обеспечивающем требуемый выход кислот и рН культуры не выше 6.5.

Полученная бражка поступает во второй аппарат, в котором происходит процесс образования метана. В такой системе можно независимо варьировать условия ферментации (скорость протока, рН, температуру) в каждом аппарате с учетом создания оптимальных условий для развития микроорганизмов деструкторов в первом и метаногенов – во втором. В целом, применение такой биосистемы позволяет интенсифицировать процесс в 2–3 раза.

Интенсифицировать процесс оказалось возможным также в результате применения более активных метаногенных микроорганизмов. Например, исследователями японской фирмы «Мацусита электрик индастриал К°»

получена массовая культура обнаруженной ими бактерии Methanobacterium kadomensis St.23, которая завершает процесс сбраживания и метаногенеза не за 15–20, а за 8 суток.

Теоретически метанообразующие бактерии в процессах синтеза метана до 90–95 % используемого углерода превращают в метан и только около 5–10 % – включают в образование биомассы. Благодаря такой высокой степени конверсии углерода в метан у метаногенов, до 80–90 % исходной органической массы, перерабатываемой в процессах сбраживания и метаногенеза, превращается в биогаз. Энергетика процесса существенным образом зависит от типа сбраживаемой органики. Если субстратом является легко утилизируемая глюкоза, теоретический выход по энергии составляет свыше 90 %, а весовой выход газа – только 27 %. Практические энергетические выходы в зависимости от типа и сложности органического сырья составляют от 20 до 50 %, соответственно, выход газа – от 80 до 50 %.

Состав газа существенно меняется в зависимости от состава и природы исходного сырья, скорости и условий протекания процесса в биореакторе.

Теоретически соотношение углекислоты и метана в биогазе должно быть примерно равным. Однако далеко не вся выделяемая в процессах брожения углекислота содержится в газовой фазе, часть растворяется в жидкой фазе с образованием бикарбонатов. Концентрация бикарбоната, в свою очередь, как и объема образуемой углекислоты в целом, сильно зависит от содержания более или менее окисленных веществ в перерабатываемом сырье: более окисленные субстраты обеспечивают большее образование кислых продуктов и, следовательно, больший выход СО2 в биогазе; более восстановленные – Н2 и, следовательно, больший выход СН4. Реально достигаемые в производственных процессах соотношения СО2 и СН4 в биогазе существенно варьируют. Это определяет калорийность получаемого биогаза, которая также варьирует от 5 до 7 ккал/м3. В зависимости от типа сырья и интенсивности процесса биометаногенеза выход биогаза колеблется от 300 до 600 м3.т органической массы при выходе метана от 170 до 400 м3/т.

Глубина переработки субстрата при этом может составлять от 20 до 70 %.

Образующийся в процессах метаногенеза жидкий или твердый шлам вывозится на поля и используется в качестве удобрений. Данное применение обусловлено условиями метаногенерации, при которой патогенные энтеробактерии, энтеровирусы, а также паразитарные популяции (Ascaris lumbricoides, Ancylostoma) практически полностью погибают. Твердый остаток процесса (или активный ил) может быть использован также в качестве исходного сырья для получения ряда биологически активных соединений в процессах химического гидролиза или микробиологического синтеза.

Экологическая безопасность применения и калорийность биогаза в сочетании с простотой технологии его получения, а также огромное количество отходов, подлежащих переработке – все это является положительным фактором для дальнейшего развития и распространения биогазовой промышленности. Толчком к созданию данного эффективного биотехнологического направления послужил энергетический кризис, разразившийся в середине 70-х гг. Производство биогаза стало одним из основных принципов энергетической политики ряда стран Тихоокеанского региона. Правительство Китая уделило больше внимания и вложило много средств в становление биогазовой промышленности, особенно в сельской местности. В рамках национальной программы были созданы условия для появления сети заводов, выпускающих биогазовые установки. Правительство поощряло это направление и пошло даже на создание сети региональных и местных контор, ответственных за биогазовую программу. Государственные банки предоставляли населению льготные ссуды и материалы для строительства установок. И уже в 1978 г., через три года после принятия программы в стране функционировало свыше 7 млн. установок, что в 15 раз превосходило уровень 1975 г. В год вырабатывалось около 2.6 млрд. м биогаза, что эквивалентно 1.5 млн. т нефти. В начале 80-х гг. в Китае производилось до 110 млрд. м3 биогаза, что эквивалентно 60–80 млн. т сырой нефти, а в середине – создано до 70 млн. установок, которые примерно у 70 % крестьянских семей покрывали бытовые потребности в энергии. В Индии также большое внимание было уделено получению энергии в процессах биометаногенеза при утилизации сельскохозяйственных отходов.



Pages:     | 1 |   ...   | 28 | 29 || 31 | 32 |   ...   | 49 |
 



Похожие работы:

«УТВЕРЖДАЮ Декан факультета управления и социологии Мошкова Л.Е. УЧЕБНО – МЕТОДИЧЕСКИЙ КОМПЛЕКС по дисциплине Концепции современного естествознания Для студентов очной формы обучения факультета управления и социологии Составитель: Сурсимова О.Ю. Обсуждено на заседании Кафедры социологии 24 февраля 2012 г. Протокол № 7 Заведующий кафедрой В.А. Михайлов Тверь 2012 Пояснительная записка Требования ГОС ВПО к обязательному минимуму содержания основной образовательной программы подготовки специалиста...»

«ТОДОР ДИЧЕВ, врач, доктор философских наук, академик НИКОЛА НИКОЛОВ, писатель и востоковед ЗЛОВЕЩИЙ ЗАГОВОР Несчастным и обречённым, но любимым нами славянам эту книгу посвящаем! СОДЕРЖАНИЕ • Вместо предисловия • Слово к читателям • 1-й раздел Тайная, могучая и зловещая власть банкиров Мистические и идеологические, политические и финансовые корни илюминизма, хасидизма и сионизма Победа масонства и сионизма в России Организованный геноцид и психоцид гоев Иудеи России и европейских стран -...»

«Е. А. БУРДИН РАЗРАБОТКА ПЛАНОВ ХОЗЯЙСТВЕННОГО ОСВОЕНИЯ ВОДНЫХ РЕСУРСОВ ВОЛГИ В 1930–1936 гг. На основании ряда ранее не опубликованных архивных материалов в статье рассматривается история возникновения и начального этапа развития плана коренной реконструкции Волги, получившего название Большая Волга. Основные его положения были разработаны в 1931–1936 гг. при участии Госпланов РСФСР и СССР, ВСНХ СССР, Наркомтяжпрома и других ведомств; также особо следует отметить значительный вклад в данный...»

«ИСТОРИЯ ОТМОРОЖЕННЫХ В КОНТЕКСТЕ ГЛОБАЛЬНОГО ПОТЕПЛЕНИЯ Москва Издательство НЦ ЭНАС 2007 УДК 551.5 ББК 26.237 Н63 Практически все исторические и естественнонаучные данные, приведенные в книге, представлены Лабораторией глобальных проблем энергетики и ее руководителем - доктором технических наук профессором Владимиром Клименко. Издание подготовлено при содействии фонда некоммерческих программ Династия. Никонов А.П. Н63 История отмороженных в контексте глобального потепления/А.П. Никонов. - М.:...»

«Ноябрь 2009 г. Секретариат Энергетической Хартии НЕСОГЛАСУЮЩИЕСЯ МЕРЫ, СОХРАНЯЕМЫЕ ДОГОВАРИВАЮЩИМИСЯ СТОРОНАМИ, И ЛЮБЫЕ ОБЯЗАТЕЛЬСТВА В ОТНОШЕНИИ ЭТИХ МЕР (СИНЯЯ КНИГА) БРЮССЕЛЬ 4 ноября 2009 г. 2 СОДЕРЖАНИЕ ВВЕДЕНИЕ Процесс уведомления Режим Осуществления Инвестиций: стандарт недискриминации Реестр несогласующихся мер (Синяя книга) Категории несогласующихся мер Земля и недвижимость Приватизация Регистрация и контроль Взаимность Прочие изъятия Статус несогласующихся мер (изъятий) ТЕКСТ...»

«Версия 1.0 Внимание! Книга постоянно дополняется и улучшается благодаря отзывам читателей. Прежде, чем приступить к прочтению, убедитесь, что это самая свежая версия. Самую свежую версию можно скачать в блоге автора по этой ссылке: truelifer.com/truelife http://www.lovesurfing.ru/raw Важное предупреждение Эта книга может слишком сильно повлиять на вас и вашу жизнь. Тут не будет философских размышлений и умных словечек. Только факты и личный опыт. Все, что тут написано - может полностью сломать...»

«О Государственной корпорации по атомной энергии Росатом Принят Государственной Думой Федерального Собрания Российской Федерации 13 ноября 2007 года Одобрен Советом Федерации Федерального Собрания Российской Федерации 23 ноября 2007 года В редакциях от 19.07.2009 № 205-ФЗ, от 31.05.2010 № 107-ФЗ, от 22.11.2010 № 305-ФЗ, от 29.12.2010 № 437-ФЗ, от 11.07.2011 № 190-ФЗ, от 18.07.2011 № 243-ФЗ, от 11.07.2011 № 200-ФЗ, от 19.07.2011 № 248-ФЗ, от 30.11.2011 № 347-ФЗ, от 21.11.2011 № 331-ФЗ. Глава...»

«РАДИАЦИОННАЯ ГИГИЕНА УЧЕБНИК ДЛЯ ВУЗОВ Рекомендовано ГОУ ВПО Московская медицинская академия имени И.М. Сеченова в качестве учебника по дисциплине Радиационная гигиена для студентов учреждений высшего профессионального образования, обучающихся по специальности 060104.65 Медико-профилактическое дело 2010 УДК 615.849(075.8) ББК 53.6я73-1 И46 Ильин Л. А., Кириллов В. Ф., Коренков И. П. Радиационная гигиена : учеб. для вузов / Л. А. Ильин, В. Ф. КиИ46 риллов, И. П. Коренков. — М. : ГЭОТАР-Медиа,...»

«СЕКЦИЯ 3: Комбинированные энергетические технологии, сочетающие геотермальную энергию и другие ВИЭ КОМБИНИРОВАННАЯ ГЕЛИО-ГЕОТЕРМАЛЬНАЯ СИСТЕМА ТЕПЛОСНАБЖЕНИЯ КОТТЕДЖНОГО ДОМА Алхасов А.Б., Алишаев М.Г. Учреждение Российской академии наук Институт проблем геотермии Дагестанского НЦ РАН; Махачкала, Россия; 367030, пр.И.Шамиля, 39а; e-mail: alishaev@rambler.ru Предлагается технология теплоснабжения коттеджей или обособленных хозяйственных зданий совмещенной системой солнечных коллекторов и...»

«Книга профессора тибетской и народной медицины, академика В. Ф. Востокова является программой для каждого человека по продлению жизни, здоровью и красоте. Она учит человека добру и дает древние знания, которые автор получил в процессе обучения в тибетских монастырях. Каждый человек может жить долго и не болеть, так как минимальная продолжительность жизни составляет 154 года. В книге автор излагает древние знания планеты Земля, методики по тибетской, народной, персидской, шаманской медицине,...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.