WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 26 | 27 || 29 | 30 |   ...   | 49 |

«Т. Г. Волова БИОТЕХНОЛОГИЯ Ответственный редактор академик И. И. Гительзон Рекомендовано Министерством общего и профессионального образования Российской Федерации в ...»

-- [ Страница 28 ] --

Работа эта требует больших трудозатрат и времени. Недостатки ступенчатого отбора могут быть в значительной степени преодолены при сочетании его с методами генетического обмена.

Генетическое конструирование in vivo (клеточная инженерия) включает получение и выделение мутантов и использование различных способов обмена наследственной информацией живых клеток.

Основой клеточной инженерии является слияние неполовых клеток (гибридизация соматических клеток) с образованием единого целого.

Слияние клеток может быть полным, или клетка-реципиент может приобрести отдельные части донорской клетки (митохондрии, цитоплазму, ядерный геном, хлоропласты и др.). К рекомбинации ведут различные процессы обмена генетической информацией живых клеток (половой и парасексуальный процесс эукариотических клеток; конъюгация, трансформация и трансдукция у прокариот, а также универсальный метод – слияние протопластов).

При гибридизации берут генетически маркированные штаммы микроорганизмов (чаще ауксотрофные мутанты или мутанты, устойчивые к ингибиторам роста). В результате слияния клеток (копуляции) происходит образование гибридов у дрожжей, грибов, водорослей. Если исходные клетки были гаплоидными, в результате слияния ядер появляется диплоидная клетка (зигота), несущая в ядре двойной набор хромосом. У отдельных представителей ядро сразу подвергается мейозу, в ходе которого каждая из хромосом расщепляется. Гомологичные хромосомы образуют пары и обмениваются частями своих хроматид в результате кроссинговера. Далее формируются гаплоидные половые споры, каждая из которых содержит набор генов, которыми различались родительские клетки, в результате рекомбинации генов одной и той же хромосомы, а также разных хромосом при распределении хромосомных пар. Если после слияния ядра не сливаются, образуются формы со смешенной цитоплазмой и ядрами разного происхождения (гетерокарионы). Такие формы свойственны грибам, особенно продуцентам пенициллинов. При размножении полученных гетерозиготных диплоидов или гетерокарионов происходит расщепление – проявление в потомстве, обнаруживающих не только доминантные, но и рецессивные признаки родителей. Половой и парасексуальный процесс широко используют в генетической практике промышленно важных микроорганизмов-продуцентов.

У бактерий обмен генетической информацией происходит в результате взаимодействия конъюгативных плазмид (конъюгации). Впервые конъюгацию наблюдали у E. coli K-12. Для конъюгационного скрещивания культуру донора и реципиента смешивают и совместно инкубируют в питательном бульоне или на поверхности агаризованных сред. Клетки при помощи образующегося конъюгационного мостика соединяются между собой; через мостик осуществляется передача определенного сайта плазмидной хромосомы к реципиенту. Так, при 37°С для переноса всей хромосомы требуется около 90 минут. Конъюгация открыла и открывает широкие перспективы для генетического анализа и конструирования штаммов.

Трансдукция – процесс переноса генетической информации от клетки реципиента к клетке-донору с помощью фага. Впервые этот процесс был описан в 1952 г. Циндером и Лидербергом. Трансдукция основана на том, что в процессе размножения фагов в бактериях возможно образование частиц, которые содержат фаговую ДНК и фрагменты бактериальной ДНК. Для осуществления трансдукции нужно размножить фаг в клетках штамма-донора, а затем заразить им клетки-реципиента. Отбор рекомбинантных форм проводят на селективных средах, не поддерживающих роста исходных форм.

В последние годы очень широко применяют метод слияния протопластов. Этот метод, видимо, является универсальным способом введения генетической информации в клетки различного происхождения. Простота метода делает его доступным для селекции промышленно важных продуцентов. Метод открывает новые возможности для получения межвидовых и межродовых гибридов и скрещивания филогенетически отдаленных форм живого. Получены положительные результаты слияния бактериальных, дрожжевых и растительных клеток. Получены межвидовые и межродовые гибриды дрожжей. Имеются данные о слиянии клеток различных видов бактерий и грибов. Удалось получить гибридные клетки в результате слияния клеток организмов, относящихся к различным царствам: животного и растительного. Ядерные клетки лягушки были слиты с протопластами моркови; гибридная растительно-животная клетка росла на средах для растительных клеток, однако, достаточно быстро утрачивала ядро и покрывалась клеточной стенкой.

Достаточно успешно в последние годы проводятся работы по созданию ассоциаций клеток различных организмов, то есть получают смешанные культуры клеток двух или более организмов с целью создания искусственных симбиозов. Успешно проведены опыты по введению азотфиксирующего организма Anabaena variabilis в растения табака. Попытки введения A. variabilis непосредственно в черенки зрелых растений табака не дали положительных результатов. Но при совместном культивировании мезофильной ткани табака и цианобактерий удалось получить растениярегенеранты, содержащие цианобактерии. Получены ассоциации клеток женьшеня и паслена с цианобактерией Chlorogleae fritschii.

Перспективно клональное размножение животных клеток для генетических манипуляций. Большие перспективы имеет техника клеточных культур животных клеток для получения биологически активных соединений, хотя делает пока только первые шаги. Культуры опухолевых клеток или нормальные клетки, трансформированные in vitro, сохраняют в ряде случаев способность синтезировать специфические продукты. Несмотря на много, пока не преодоленных трудностей, показана возможность получения ряда веществ в культуре животных клеток:



Важное направление клеточной инженерии связано с ранними эмбриональными стадиями. Так, оплодотворение яйцеклеток в пробирке позволяет преодолеть бесплодие. С помощью инъекции гормонов можно получить от одного животного десятки яйцеклеток, искусственно их оплодотворить in vitro и имплантировать в матку других животных. Эта технология применяется в животноводстве для получения монозиготных близнецов. Разработан новый метод, основанный на способности индивидуальных клеток раннего эмбриона развиваться в нормальный плод. Клетки эмбриона разделяют на несколько равных частей и трансплантируют реципиентам. Это позволяет размножать различных животных ускоренным путем. Манипуляции на эмбрионах используют для создания эмбрионов различных животных. Подход позволяет преодолеть межвидовой барьер и создавать химерных животных.

Таким образом получены, например, овце-козлиные химеры.

Наиболее перспективным направлением клеточной инженерии является гибридомная технология. Гибридные клетки (гибридомы) образуются в результате слияния клеток с различными генетическими программами, например, нормальных дифференцированных и трансформированных клеток. Блестящим примером достижения данной технологии являются гибридомы, полученные в результате слияния нормальных лимфоцитов и миеломных клеток. Эти гибридные клетки обладают способностью к синтезу специфических антител, а также к неограниченному росту в процессе культивирования.

В отличие от традиционной техники получения антител, гибридомная техника впервые позволила получить моноклональные антитела (антитела, продуцируемые потомками одной-единственной клетки). Моноклональные антитела высокоспецифичны, они направлены против одной антигенной детерминанты. Возможно получение нескольких моноклональных антител на разные антигенные детерминанты, в том числе сложные макромолекулы.

Моноклональные антитела в промышленных масштабах получены сравнительно недавно. Как известно, нормальная иммунная система способна в ответ на чужеродные агенты (антигены) вырабатывать до миллиона различных видов антител, а злокачественная клетка синтезирует только антитела одного типа. Миеломные клетки быстро размножаются. Поэтому культуру, полученную от единственной миеломной клетки, можно поддерживать очень долго. Однако невозможно заставить миеломные клетки вырабатывать антитела к определенному антигену. Эту проблему удалось решить в 1975 г. Цезарю Мильштейну. У сотрудников Медицинской научно-исследовательской лаборатории молекулярной биологии в Кембридже возникла идея слияния клеток мышиной миеломы с Влимфоцитами из селезенки мыши, иммунизированной каким-либо специфическим антигеном. Образующиеся в результате слияния гибридные клетки приобретают свойства обеих родительских клеток: бессмертие и способность секретировать огромное количество какого-либо одного антитела определенного типа (рис. 4.5). Эти работы имели огромное значение и открыли новую эру в экспериментальной иммунологии.

В 1980 г. Карло М. Кроче с сотрудниками (США) удалось создать стабильную, продуцирующую антигены, внутривидовую человеческую гибридому путем слияния В-лимфоцитов миеломного больного с периферическими лимфоцитами от больного с подострым панэнцефалитом.

Основные этапы получения гибридомной техники следующие. Мышей иммунизируют антигеном, после этого из селезенки выделяют спленоциты, которые в присутствии полиэтиленгликоля сливают с дефектными опухолевыми клетками (обычно дефектными по ферментам запасного пути биосинтеза нуклеотидов – гипоксантина или тиамина). Далее на селективной среде, позволяющей размножаться только гибридным клеткам, Антитело Рис. 4.5. Схема продукции моноклональных антител гибридомой, образованной лимфоцитами и миеломными клетками (по Г. Фаффу, 1984).

А – антиген с 4 антигенными детерминантами на поверхности; после инъекции антигена лимфоциты мыши продуцируют 4 типа антител; антисыворотка из крови мыши содержит смесь антител; Б – лимфоциты сливаются с миеломными клетками; гибридные клетки (источник чистых антител) клонируют.

Возможные области и способы применения антител (по И. Хиггинсу, 1988) Диагностика Наборы реактивов для диагностики беременности Иммунодиагностика Точное определение количества специфических антигенов Иммуноочистка Очистка антигенов (например, интерферона) руют на присутствие антител. Положительные культуры отбирают и клонируют. Клоны инъецируют животным с целью образования опухоли, продуцирующей антитела, либо наращивают их в культуре. Асцитная жидкость мыши может содержать до 10–30 мг/мл моноклональных антител.

Гибридомы можно хранить в замороженном состоянии, и в любое время вводить дозу такого клона в животное той линии, от которой получены клетки для слияния. В настоящее время созданы банки моноклональных антител. Антитела применяют в разнообразных диагностических и терапевтических целях, включая противораковое лечение (таблица 4.1).

Эффективным способом применения моноклональных антител в терапии является связывание их с цитоксическими ядами. Антитела, конъюгированные с ядами, отслеживают и уничтожают в макроорганизме раковые клетки определенной специфичности.

Таким образом, клеточная инженерия является эффективным способом модификации биологических объектов и позволяет получать новые ценные продуценты на органном и также клеточном и тканевом уровнях.

Глава 5. ТЕХНОЛОГИЧЕСКАЯ БИОЭНЕРГЕТИКА

И БИОЛОГИЧЕСКАЯ ПЕРЕРАБОТКА

МИНЕРАЛЬНОГО СЫРЬЯ

Необходимость разработки новых и эффективных способов производства энергетических носителей и восполнения сырьевых ресурсов стала особенно актуальной в последние два десятилетия из-за острого дефицита сырья и энергии в глобальном масштабе и повышения требований к экологической безопасности технологий. В этой связи стали интенсивно развиваться новые разделы биотехнологии – «Биоэнергетика» и «Биогеотехнология металлов».



Pages:     | 1 |   ...   | 26 | 27 || 29 | 30 |   ...   | 49 |
 



Похожие работы:

«Содержание Пленарная сессия: Комплексные проекты 6 Технологии и универсальные модульные комплексы для переработки металлосодержащих отходов с получением товарных металлов Серегин А.Н., ФГУП Центральный научно-исследовательский институт черной металлургии им. 6 И.П. Бардина.... Автоматизированные технологии оценки состояния и динамики растительных ресурсов наземных экосистем на основе дистанционного мониторинга – подходы, методы и технологические решения Бондур В.Г., Государственное учреждение...»

«ООО ИНТЕХЭКО Каталог участников Шестой Международной конференции ПЫЛЕГАЗООЧИСТКА-2013 - технологии очистки газов и воздуха www.intecheco.ru от пыли, золы, диоксида серы, окислов азота, ПАУ и других вредных веществ, электрофильтры, рукавные фильтры, скрубберы, циклоны, дымососы, вентиляторы, новейшие фильтровальные материалы, пылетранспорт, затворы, системы экомониторинга, газоанализаторы и пылемеры, АСУТП, агрегаты питания электрофильтров, оборудование систем вентиляции и кондиционирования,...»

«Составители : Ю.В. Арбузов, О.А. Бондин, А.И. Евсеев, В.Н. Кулешов, Б.Р. Липай, С.И. Маслов, В.Ф. Очков, А.И. Тихонов Информатизация инженерного образования: электронные И 741 образовательные ресурсы МЭИ. Выпуск 2 / сост.: Ю.В. Арбузов, О.А. Бондин, А.И. Евсеев и др.; под общ. ред. С.И. Маслова. — М. : Издательский дом МЭИ, 2007. — 314 с.: ил. ISBN 975-5-383-00123-3 Справочное издание содержит описания электронных образовательных ресурсов, разработанных в МЭИ (ТУ), включая электронные...»

«Перевод Белоусова В.И. Вулканическая и Геотермальная энергия Вохленц Preferred Citation: Wohletz, Kenneth, and Grant Heiken. Volcanology and Geothermal Energy. Berkeley: University of California Press, 1992. http://ark.cdlib.org/ark:/13030/ft6v19p151/ Volcanology and Geothermal Energy Kenneth Wohletz Grant Heiken UNIVERSITY OF CALIFORNIA PRESS Berkeley · Los Angeles · Oxford © 1992 The Regents of the University of California Введение. 2 Геотермальная энергия является важным и перспективным...»

«МИНИСТЕРСТВО АТОМНОЙ ЭНЕРГЕТИКИ И ПРОМЫШЛЕННОСТИ СССР СОГЛАСОВАНО УТВЕРЖДАЮ Главгосэкоэкспертиза Заместитель министра Госкомприроды СССР Е.В.Минаев Е.А.Решетников __1990 г. __1990 г. ВРЕМЕННЫЕ ТРЕБОВАНИЯ К СТРУКТУРЕ И СОДЕРЖАНИЮ РАЗДЕЛА ТЭО, ПРОЕКТА СТРОИТЕЛЬСТВА АТОМНОЙ СТАНЦИИ: ОЦЕНКА ВОЗДЕЙСТВИЯ АС НА ОКРУЖАЮЩУЮ СРЕДУ Директор института Курочкин В.И. Начальник БКП-2 Ермаков Ю.Г. Начальник отдела Минасян Р.Г. Москва - 1990 ОТВЕТСТВЕННЫЕ ИСПОЛНИТЕЛИ: Минасян Р.Г. Институт Атомэнергопроект...»

«СЕКЦИЯ 3: Комбинированные энергетические технологии, сочетающие геотермальную энергию и другие ВИЭ КОМБИНИРОВАННАЯ ГЕЛИО-ГЕОТЕРМАЛЬНАЯ СИСТЕМА ТЕПЛОСНАБЖЕНИЯ КОТТЕДЖНОГО ДОМА Алхасов А.Б., Алишаев М.Г. Учреждение Российской академии наук Институт проблем геотермии Дагестанского НЦ РАН; Махачкала, Россия; 367030, пр.И.Шамиля, 39а; e-mail: alishaev@rambler.ru Предлагается технология теплоснабжения коттеджей или обособленных хозяйственных зданий совмещенной системой солнечных коллекторов и...»

«ГДЕ ОТРАСЛИ СОЕДИНЯЮТСЯ ПРЕДВАРИТЕЛЬНАЯ ПРОГРАММА МЕРОПРИЯТИЯ Зарегистрируйтесь для участия в Конференции до 4 февраля 2013 г. включительно и воспользуйтесь скидками для заранее регистрирующихся делегатов Собственник и устроитель: В партнерстве с: При поддержке: Представлено: System Operator of Russia СОДЕРЖАНИЕ Содержание/зарегистрируйтесь для участия в Russia Power 2 Представляем выставку и конференцию Russia Power 3 Добро пожаловать на Russia Power (Совет производителей энергии) 4 Расписание...»

«А.Г. Лаптев, М.И. Фарахов, М.М. Башаров и др. Энерго- и ресурсосберегающие технологии и аппараты очистки жидкостей в нефтехимии и энергетике Под редакцией А.Г. Лаптева Отечество Казань 2012 УДК 621.187:612.182 ББК 31.37 Л 24 Авторы: А.Г. Лаптев, М.И. Фарахов, М.М. Башаров, Л.А. Николаева, Н.К. Лаптедульче, Е.О. Шинкевич, Е.С. Сергеева, Ю.М. Демидова, Е.Н. Бородай, А.Н. Долгов, М.М. Фарахов, Г.Г. Сафина Рецензенты: д.х.н., профессор Х.Э. Харлампиди д.т.н., профессор Е.Л. Матухин Л 24 Энерго- и...»

«СОВЕТ МУНИЦИПАЛЬНОГО РАЙОНА ВУКТЫЛ РЕШЕНИЕ от 9 июня 2011 г. N 36 ОБ УТВЕРЖДЕНИИ СХЕМЫ ТЕРРИТОРИАЛЬНОГО ПЛАНИРОВАНИЯ МУНИЦИПАЛЬНОГО РАЙОНА ВУКТЫЛ В соответствии с Федеральным законом от 06.10.2003 N 131-ФЗ Об общих принципах организации местного самоуправления в Российской Федерации, статьей 20 Градостроительного кодекса Российской Федерации, статьей 6 Закона Республики Коми О некоторых вопросах в области градостроительной деятельности в Республике Коми, Уставом муниципального района Вуктыл...»

«Республиканское унитарное предприятие БЕЛГИПРОЛЕС НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ В ЛЕСНОМ ХОЗЯЙСТВЕ ВЫПУСК № 9 Минск 2005 СОДЕРЖАНИЕ I. Н.К.Крук, статья Лесное хозяйство Швеции 3 1. Общая характеристика лесного сектора Швеции 3 2. Структура управления лесным комплексом Швеции 5 3. Лесная политика и законодательство Швеции 11 4. Лесная сертификация Швеции 14 5. Биоэнергетика и опыт организации использования древесины и отходов производства в качестве топливно-энергетического сырья 14 II. Киотский...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.