WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 24 | 25 || 27 | 28 |   ...   | 49 |

«Т. Г. Волова БИОТЕХНОЛОГИЯ Ответственный редактор академик И. И. Гительзон Рекомендовано Министерством общего и профессионального образования Российской Федерации в ...»

-- [ Страница 26 ] --

Конструирование рекомбинантных ДНК осуществляется in vitro с изолированными ДНК при помощи эндонуклеаз рестрикции, которые расщепляют вектор в одном участке, превращая его из кольцевой формы в линейную с образованием липких концов, комплиментарных концам вводимой ДНК. Комплиментарные концы вектора и вводимого гена сшиваются лигазой. Полученную рекомбинантную ДНК с помощью той же ДНКлигазы замыкают с образованием кольцевой молекулы.

В качестве векторов используют плазмиды и вирусы. Вирусы быстро транспортируются из клетки в клетку, за короткое время способны быстро заразить весь организм. Важной проблемой при их использовании является аттеньюация – ослабление патогенности для хозяина; таким образом, не очевидно, что зараженные вирусом клетки выживут и смогут передавать потомству измененную генетическую программу. Наиболее распространенными векторами являются многокопийные плазмиды с молекулярной массой 3–10 кб. Первые плазмиды были выделены из бактерий, впоследствии их стали конструировать методами генной инженерии.

Использование векторов общего назначения методически – несложная задача, не требующая специального оборудования. Наиболее используемыми плазмидными векторами для клонирования являются плазмиды E.

coli (pBR322, pBR325, pACYC117, pACYC 184), а также сконструированные на основе плазмиды CoIEI. Современные плазмидные векторы в присутствии хлорамфеникола способны к репликации, независимо от деления хромосомы, количество копий плазмид при этом может возрастать до 1– 2.103 копий на клетку.

При получении библиотеки генов растений и высших животных, у которых общая длина генома составляет до 3109 и более, емкость вектора часто играет решающую роль. В данном случае в качестве вектора используют ДНК фага. При помощи специальных методов рекомбинантные ДНК вводят прямо в фаговые головки. Еще большей емкостью обладают плазмиды – космиды (до 40 кб), у которых cos-фрагмент генома фага, участвует в упаковке ДНК в фаговую частицу на конечной стадии развития. Для упаковки ДНК необходимо, чтобы ДНК содержала COSучасток и ее размер был примерно равным размеру генома ага l. Достигнутые методы упаковки ДНК в фаговую головку при помощи космид позволяют получать библиотеки генов практически любых организмов.

Перенос генов в клетки организма-реципиента Перенос рекомбинантных ДНК осуществляется путем трансформации или конъюгации. Трансформация – это процесс изменения генетических свойств клетки в результате проникновения в нее чужеродной ДНК.

Впервые она была обнаружена у пневмококков Ф. Гиффитом, который показал, что некоторые клетки невирулентных штаммов бактерий при заражении ими мышей совместно с вирулентными штаммами приобретают патогенные свойства. В дальнейшем трансформация была продемонстрирована и изучена у различных видов бактерий.

Установлено, что к трансформации способны лишь некоторые, так называемые «компетентные», клетки (способные включать чужеродную ДНК и синтезирующие особый трансформирующий белок). Компетентность клетки определяется также факторами внешней среды. Этому может способствовать обработка клеток полиэтиленгликолем или хлоридом кальция. После проникновения в клетку одна из нитей рекомбинантной ДНК деградирует, а другая за счет рекомбинации с гомологичным участком реципиентной ДНК может включиться в хромосому или внехромосомную единицу. Трансформация является наиболее универсальным способом передачи генетической информации и имеет наибольшее значение для генетических технологий.

Конъюгация – один из способов обмена генетического материала, при котором происходит однонаправленный перенос генетической информации от донора к реципиенту. Этот перенос находится под контролем особых конъюгативных плазмид (фактор фертильности). Перенос информации от донорской клетки в реципиентную осуществляется через специальные половые ворсинки (пили). Возможна передача информации и с помощью неконъюгативных плазмид при участии плазмид-помощниц.

Передача всего набора генов вируса или фага, приводящая к развитию в клетке фаговых частиц, называется трансфекцией. Методика применительно к бактериальным клеткам включает получение сферопластов, очистку инкубационной среды от нуклеаз и добавление очищенной фаговой ДНК (присутствие протаминсульфата повышает эффективность трансфекции). Методика применима к животным и растительным клеткам с участием специальных челночных вирусных векторов.

Скрининг и отбор рекомбинантных клеток После переноса сконструированных ДНК, как правило, лишь небольшая часть реципиентных клеток приобретает необходимый ген. Поэтому очень важным этапом является идентификация клеток, несущих ген-мишень.

На первой стадии идентифицируют и отбирают клетки, несущие вектор, на основе которого осуществлен перенос ДНК. Отбор проводят по генетическим маркерам, которыми помечен вектор. Главным образом маркерами являются гены устойчивости к антибиотикам. Поэтому отбор проводят высевом клеток на среды, содержащие конкретный антибиотик.

После высева на этих средах вырастают только клетки, в составе которых находится вектор с генами антибиотиковой устойчивости.

На второй стадии отбирают клетки, несущие вектор и ген-мишень. Для этого используют две группы методов: 1) основанные на непосредственном анализе ДНК клеток-реципиентов и 2) основанные на идентификации признака, кодируемого геном-мишенью. При использовании первой группы методов из клеток, предположительно содержащих нужный ген, выделяют векторную ДНК, и в ней проводится поиск участков, несущих данный ген. Далее проводят секвенирование части нуклеотидной последовательности гена. Возможен другой метод – гибридизация выделенной из клеток ДНК с зондом (искомый ген или соответствующая ему мРНК); выделенную ДНК переводят в одноцепочечное состояние и вводят ее во взаимодействие с зондом. Далее определяют наличие двуцепочечных гибридных молекул ДНК. Во втором варианте возможен непосредственный отбор клеток, синтезирующих белок – продукт транскрипции и трансляции гена-мишени. Применяются также селективные среды, поддерживающие рост только клеток, приобретших ген-мишень.



С помощью методов генетической инженерии возможно конструирование новых форм микроорганизмов по заданному плану, способных синтезировать разнообразные продукты, в том числе эукариотических организмов. Рекомбинантные микробные клетки быстро размножаются в контролируемых условиях и способны утилизировать при этом разнообразные, в том числе, недорогие субстраты.

Основные проблемы, возникающие при генетических манипуляциях, заключаются в следующем: 1) гены при трансформации, попадая в чужеродную среду, подвергаются воздействию протеаз, поэтому их надо защищать; 2) как правило, продукт трансплантированного гена аккумулируется в клетках и не выделяется в среду; 3) большинство желаемых признаков кодируется не одним, а группой генов. Все это существенно затрудняет перенос и требует разработки технологии последовательной трансплантации каждого гена.

К настоящему времени генетическая инженерия освоила все царства живого. Фенотипическое выражение «чужих» генов (экспрессия) получены у бактерий, дрожжей, грибов, растений и животных. Блестящие успехи достигнуты на клетках наиболее и всесторонне изученных микроорганизмов. Эра рекомбинантных ДНК применительно к растениям и высшим животным только начинается. В области генетической инженерии животных клонированы гены -глобина мышей, фага. Помимо почечных клеток зеленой африканской мартышки, испытываются все новые виды культуры животных клеток, в том числе клетки человека. Например, в клетках непарного шелкопряда с применением вирусного вектора удалось добиться экспрессии гена -интерферона человека. Этот ген также клонирован в клетках млекопитающих. В генетической инженерии человека, как и в генетическом конструировании растений, пока не достигнуто тканеспецифического выражения генов. Решения данной проблемы ищут на путях введения определенных промоторов регуляторных участков в конструируемые векторы. Пока остается достаточно отдаленной задачей возможность улучшения сельскохозяйственных пород животных. К настоящему времени практически нет сведений по генетике таких признаков, как плодовитость, выход и жирность молока, повышение устойчивости к болезням и др. Это препятствует попыткам генетических манипуляций в данной области.

Генетическая инженерия дает в руки биотехнологов не только новые продуценты ценных соединений, но и улучшает и повышает эффективность ценных свойств уже традиционно используемых организмов. Распространенным методом повышения выхода полезного продукта является амплификация – увеличение числа копий генов. Образование многих целевых продуктов (аминокислот, витаминов, антибиотиков и др.) характеризуется длинным биохимическим путем синтеза, который управляется не одним, а десятками генов. Выделение этих генов и клонирование с помощью амплификации представляет довольно трудную, но в ряде случаев возможную задачу. Повышение выхода полезного продукта достигается также с помощью локализованного (сайт-специфического) мутагенеза in vitro: с использованием химического мутагенеза обрабатывается не весь геном клетки, а его фрагмент, полученный с помощью рестрикции.

4.2. ГЕННАЯ ИНЖЕНЕРИЯ

ПРОМЫШЛЕННО ВАЖНЫХ ПРОДУЦЕНТОВ

Развитие техники рекомбинантных ДНК позволяет проводить выделение генов эукариот и экспрессировать их в гетерологических системах. В настоящее время методы генетической инженерии позволяют конструировать генетические системы, способные функционировать в клетках прокариот и эукариот. Эти возможности позволяют создавать организмы, обладающие новыми ценными свойствами, например, бактериальные штаммы, способные синтезировать эукариотические белки.

Среди белковых продуктов, представляющих большой интерес, выделяются такие биологически активные вещества, как гормоны. Важное место среди них занимают белковые и пептидные гормоны. Эти гормоны, многие из которых остро необходимы в медицине, до недавнего времени получали экстракцией из тканей животных при условии, что гормон не обладает выраженной видовой специфичностью. Сравнительно короткие пептидные гормоны пытались получать химическим синтезом. Но такой путь получения оказался нерентабельным уже для молекул, состоящих из нескольких десятков звеньев. Единственным источником гормонов с крайне выраженной видовой специфичностью (гормон роста соматотропин) были органы умерших людей.

Успехи генетической инженерии вселили надежды на возможность клонирования генов синтеза ряда гормонов в микробных клетках. Эти надежды в значительной мере оправдались, в первую очередь, на примере микробиологического синтеза пептидных гормонов.

Первые успешные результаты по экспрессии химически синтезированной последовательности нуклеотидов ДНК, кодирующей 14-звенный пептидный гормон соматостатин (антагонист соматотропина), получены в 1977 г. в США компанией «Генетек». Для предотвращения процесса разрушения гормона в бактериальных клетках под воздействием пептидазы авторы применили подход, который потом был успешно использован для получения других пептидных гормонов. Был сконструирован гибридный ген, часть которого была взята из гена фермента -галактозидазы кишечной палочки, а остаток представлял собой фрагмент, кодирующий собственно соматостатин (фрагмент синтезировали химически). Введенный в бактериальные клетки гибридный ген направлял синтез белка-химеры, состоящего более чем на 90 % из аминокислотной последовательности галактозидазы. Остальная часть представляла собой соматостатин. На стыке участка двух исходных генов находился кодон аминокислоты метионина. Последнее позволило обработать гибридный белок бромцианом, разрывающим пептидную связь, образованную метионином; среди продуктов расщепления был обнаружен соматостатин. Данный подход был использован для получения многих пептидных гормонов (А- и В-цепей инсулина, нейропептида лейэнкефалина, брадикинина, ангиотензина и др.).



Pages:     | 1 |   ...   | 24 | 25 || 27 | 28 |   ...   | 49 |
 



Похожие работы:

«Примерная основная образовательная программа высшего профессионального образования специальность 180405 Эксплуатация судовых энергетических установок Утверждена Постановлением Правительства РФ от 30.12.2009 г. № 1136 ФГОС ВПО утвержден приказом Минобрнауки России от 24.12.2010 г. №2060 Квалификация выпускника специалист Нормативный срок освоения программы пять лет Форма обучения - очная. Примерная образовательная программа (ПООП) по специальности 180405 Эксплуатация судовых энергетических...»

«Микола Чаварг, 1999 ISBN 9667242781 СОДЕРЖАНИЕ От автора Предисловие 1. К вопросу о понятии потенциальной кривой 2. Наглядные модели атомов 3. Атом с пространственно-фиксированными положениями электронов. 33 4. Наглядные модели фотона и электрона 4.1 Наглядная модель фотона 4.2. Наглядная модель электрона 5. Движение...»

«СИСТЕМА НОРМАТИВНЫХ ДОКУМЕНТОВ В ГАЗОВОЙ ПРОМЫШЛЕННОСТИ ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ГАЗПРОМ ВЕДОМСТВЕННЫЙ РУКОВОДЯЩИЙ ДОКУМЕНТ РЕГЛАМЕНТ ОРГАНИЗАЦИИ РАБОТ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ СТРОИТЕЛЬСТВЕ СКВАЖИН ВРД 39-1.13-057-2002 Москва 2002 ПРЕДИСЛОВИЕ РАЗРАБОТАН Обществом с ограниченной ответственностью Научноисследовательский институт природных газов и газовых технологий - ВНИИГАЗ СОГЛАСОВАН Минтопэнерго России (№ 21-02-01/45 от 15 марта 2000 г.) Госкомэкологией России (№ 03-22/27-56 от 10...»

«Строительство АЭС в Республике Беларусь. Выдача мощности и связь с энергосистемой. ОРУ 330 кВ ПС Поставы с заходами ВЛ 330кВ Игналинская АЭС – ПС Полоцк, ВЛ 330 кВ Игналинская АЭС – ПС Белорусская, ВЛ 330 кВ Игналинская АЭС – Сморгонь. Архитектурный проект ТОМ 17 Отчет об оценке воздействия на окружающую среду Книга 1 14444/3-01-т13 Главный инженер О.Е.Ямный Главный инженер проекта В.В.Баринов Начальник ОЛЭП _М.Э.Гук Нач. СО А.А.Беляев 2012 г. СОДЕРЖАНИЕ Введение 3  1. Общая характеристика...»

«май 2006 СОДЕРЖАНИЕ ФЕДЕРАЛЬНЫЕ ЗАКОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ 1. Федеральный закон от 26 марта 2003 г. № 35 ФЗ Об электроэнергетике 2. Федеральный закон от 26 марта 2003 г. № 36 ФЗ Об особенностях функционирования электроэнергетики в переходный период и о внесении изменений в некоторые законодательные акты Российской Федерации и признании утратившими силу некоторых законодательных актов Российской Федерации в связи с принятием Федерального закона Об электроэнергетике 3. Федеральный закон от 14...»

«ГЕОЭКОЛОГИЯ Рекомендовано Министерством общего и профессионального образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению “Экология и природопользование” и специальностям “Геоэкология”, “Экология” и “Природопользование” ГЕОС Москва 1999 УДК 574.9 ББК 26.82 Г 35 Голубев Г. Н. Геоэкология. Учебник для студентов высших учебных заведений. – М.: Изд-во ГЕОС, 1999. – 338 с. ISBN 5-89118-059-6 Учебник составлен в соответствии с типовой...»

«ОБРАЩЕНИЕ К ГЛАВАМ ГОСУДАРСТВ, ПАРЛАМЕНТОВ, ПРАВИТЕЛЬСТВ СООБЩЕСТВА СТРАН ЕС, ОЧЭС, СДС, БРИК, АТЭС И К УЧАСТНИКАМ Международного Экологического Проекта Мирный Водород и Энергетика. З А П Р О С: Прошу Вас, дать ответ на предложение участия Вашей Страны в Международном Экологическом Проекте Мирный Водород и Энергетика (МЭП МВЭ) и создания инфраструктуры Международного Технического Консорциума Новые Экологические и Энергетические Проекты (МТК НЭЭП), регистрации в Европе вертикально...»

«Памятные даты: 2014 год – Год науки Россия - ЕС; 2014 год – Год культуры в Российской Федерации; 2014 год – Год кристаллографии; 2014 год – 180-летие Гидрометеорологической службы России; 2014 год – 300-летие Нижегородской губернии; 2005 – 2015 гг. – Международное десятилетие действий Вода для жизни; 2011– 2020 гг. – Десятилетие биоразнообразия Организации Объединенных Наций; 2005 – 2014 гг. – Десятилетие образования в интересах устойчивого развития; 2014 – 2024 гг. – Десятилетие устойчивой...»

«При поддержке ЭНеРГетичеСкий фоРУм Москва, НИТУ МИСиС 5-6 декабря 2012 Международная конференция Электроэнергетика России: генерация, транспорт и распределение. Концепция развития до 2020 года. electro.problema.ru 7 декабря 2012 Международная конференция Уголь России и СНГ 2012 coal.rusmet.ru...»

«А.Е.Арменский, С.Э.Кочубей, В.В.Устюгов Экономика устойчивого развития: прорывные идеи и технологии Структура монографии Введение. 1. Современное состояние проблемы. Причины социально-экономического неблагополучия. 2. Основные положения теории прорывных технологий. Система мер. Система измеряемых величин и место в ней энергетических мер. 3. Управление устойчивым развитием. 3.1.Смена правил государственного ценообразования. 3.1.1.Выбор исследовательской модели и метода исследования. 3.1.2.Начала...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.