WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 22 | 23 || 25 | 26 |   ...   | 49 |

«Т. Г. Волова БИОТЕХНОЛОГИЯ Ответственный редактор академик И. И. Гительзон Рекомендовано Министерством общего и профессионального образования Российской Федерации в ...»

-- [ Страница 24 ] --

Лактоза, присутствующая в достаточно больших количествах в молоке и плохо растворимая, вызывает кристаллизацию ряда молочных продуктов и кондитерских изделий, снижая их качество. Кроме этого, некоторая часть населения не может употреблять нативное молоко вследствие недостаточности лактазы, фермента, гидролизующего молочный сахар с образованием глюкозы и галактозы. Молоко после такой обработки приобретает качества диетического продукта. Масштабы производства безлактозного молока возрастают во многих европейских странах.

Получение сахаров из молочной сыворотки в процессе ферментативного гидролиза позволяет получать дополнительные количества сахаристых веществ из отходов молочной промышленности. Первые промышленные процессы гидролиза лактозы молочной сыворотки с использованием иммобилизованной лактазы осуществлены в 1980 г. в Англии и Франции. Предварительно деминерализованную сыворотку пастеризуют и затем пропускают через ферментационную колонку с иммобилизованной лактазой. Период полуинактивации фермента удается увеличить до суток, мощность установок – 1000 л/ч при 80 % конверсии лактозы. Получаемые при этом глюкоза и галактоза превосходят по степени сладости обычные сахара в 1.5 раза при равных экономических показателях.

Получение L-яблочной кислоты ферментативным способом из Lаспарагиновой кислоты основано на использовании иммобилизованной в геле фумаразы. Яблочная кислота достаточно широко используется в пищевой и фармацевтической промышленности в качестве заменителя лимонной кислоты. Компанией «Танабе Суйяку» в результате иммобилизации фумаразы в карраген удалось повысить ее операционную стабильность при времени полуинактивации свыше 100 суток, при этом продуктивность процесса превращения фумаровой кислоты в яблочную возросла более чем в 5 раз.

Получение L-аспарагиновой кислоты с помощью фермента аспартазы, иммобилизованной в геле, со временем полуинактивации препарата до суток возможно из фумаровой кислоты. Фермент, присоединяя аммиак к двойной связи фумаровой кислоты, в одну стадию образует оптически активную форму L-аспарагиновой кислоты. Процесс реализован также на основе иммобилизованных в гель микробных клеток с дополнительным химическим связыванием, время полуинактивации аспартазы, находящейся в клетках, возросло до 120 суток; технологический процесс практически полностью автоматизирован и реализуется в непрерывном режиме.

Производительность установок – до 1.7 т/1м3 в день.

Помимо представленных и реализованных в промышленных масштабах процессов, иммобилизованные ферменты в настоящее время широко используются в научных исследованиях при разработке новых биотехнологических процессов получения ценных продуктов. Это процесс получения глюкозы из крахмала с участием амилазы и глюкозоамилазы;

получение инвертного сахара (аналог глюкозо-фруктозных сиропов) из сахарозы с использованием инвертазы. В рамках диетологии разрабатываются процессы получения белковых гидролизатов заданного состава с участием иммобилизованных протеаз. Осваиваются установки для непрерывного ферментативного получения глюкозы из различных целллюлозосодержащих отходов.

Использование иммобилизованных ферментов в тонком органическом синтезе Высокие скорости протекания реакций в «мягких» условиях, уникальная специфичность и стереоспецифичность действия ферментов позволяет создавать на их основе эффективные и перспективные технологические процессы. В настоящее время успехи в тонком органическом синтезе на основе иммобилизованных ферментов особенно наглядны в сфере получения лекарственных препаратов (антибиотиков, стероидов, простагландинов).

С использованием иммобилизованных ферментов созданы процессы получения более эффективных аналогов существующих антибиотиков пенициллинового ряда и цефалоспоринов, модификация которых химическим путем является чрезвычайно сложной задачей. Так, на основе иммобилизованной пенициллинамидазы реализован процесс эффективного деацилирования бензилпенициллина, являющегося сырьем для получения 6-амино-пеницилановой кислоты (6-АПК). Это достаточно простой технологический процесс, протекающий в одну стадию при обычных условиях в диапазоне температур 10–40°С. Промышленная реализация процесса получения 6-АПК привела к существенному увеличению выпуска полусинтетических пенициллинов и удешевлению их. На основе этого же фермента разработан процесс получения 7-аминодезацетоксицефалоспоровой кислоты, представляющей собой ключевой субстрат для синтеза новых цефалоспоринов.

Перспективно применения ферментативного катализа для получения ряда лекарственных веществ (простагландинов, тромбоксанов, простациклина и др.) из арахидоновой кислоты с использованием сложных полиферментных систем. Ключевым ферментом здесь является простагландинэндопероксидсинтетаза, катализирующая трехсубстратную реакцию. В ходе реакции происходит сопряженное окисление арахидоновой кислоты кислородом и донором электронов в виде НАДН, триптофана, ферроцианида. Следует отметить, что исходный субстрат для этих реакций, арахидоновая кислота, может быть получена из масел с использованием специфических фосфолипаз.

Интересным направлением являются разрабатываемые процессы превращения достаточно доступных субстратов (фумарата аммония, фенола, индола, пирувата аммония) в редкие аминокислоты (тирозин, фенилаланин, триптофан, 5-окситриптофан) с участием лиаз, процессы получения органических кислот из фумаровой, ферментативная модификация нуклеиновых кислот, синтез олиго- и полипетидов. Ферментативный органический синтез, находящийся в настоящее время на стадии становления и развития, имеет огромные перспективы для существенного расширения сферы применения в ближайшем будущем.



3.4. ФЕРМЕНТЫ В МИКРОАНАЛИЗЕ Высокая каталитическая активность и уникальная специфичность действия ферментов являются основой применения их для аналитических целей.

Ферментные методы анализа характеризуются высокой чувствительностью, специфичностью, точностью, быстродействием, а также возможностью применения в сложных многокомпонентных средах. В аналитической энзимологии применяется широкий спектр ферментов, относящихся ко всем классам (оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы).

При этом наряду с моноферментными системами, широко используются полиферментные системы. В настоящее время созданы, наряду с классическими фотометрическими методами регистрации, принципиально новые методы – электрохимические, био- и хемолюминесцентные.

Ферментный анализ относится к кинетическим методам анализа, при котором искомое вещество определяют по скорости реакции, пропорциональной концентрации определяемого вещества. Например, при превращении вещества А в продукт Р: А P, концентрация последнего будет нарастать во времени, при этом начальная скорость реакции vо пропорциональна концентрации А: vо = k [А], где k – константа скорости реакции.

Чем выше исходная концентрация определяемого вещества, тем больше начальная скорость реакции. Предварительно построенный калибровочный график зависимости vо от [А] позволяет определять неизвестные концентрации веществ в анализируемой смеси.

Ферментный электрод – это комбинация датчика, основой которого является ионоселективный электрод с иммобилизованным ферментом. Понятие ферментного электрода ввели Кларк и Лайон в 1962 г.; в то время использовали растворимые ферменты. В 1969 г. Гильбо и Монталво впервые описали потенциометрический ферментный электрод для определения мочевины, позволявший измерять разность потенциалов, возникающую в системе при отсутствии внешнего напряжения. Иммобилизованный фермент в конструкции электрода первыми применили Апдайк и Хикс в 1971 г., укрепив иммобилизованную в геле глюкозооксидазу на поверхности полярографического кислородного датчика (датчик вольтометрического или амперметрического типа позволяет измерять ток при наложении постоянного напряжения). С тех пор разработано свыше 100 различных конструкций ферментных электродов, некоторые из них представлены в табл. 3.7.

В ферментном электроде фермент используют обычно в иммобилизованном виде. Для этого применяют два метода: химическую модификацию молекул фермента путем введения групп, обеспечивающих нерастворимость, и физическое включение фермента в инертный носитель (крахмал, ПААГ) (рис. 3.4). Ферментный электрод используют как обычный ионоселективный электрод. Потенциометрические датчики (электроды для определения мочевины, пенициллина, аминокислот) непосредственно подключают к цифровому вольтметру; строят график зависимости потенциала (мВ) от концентрации определяемого вещества в полулогарифмических координатах.

При использовании амперметрических электродов (платинового или кислородного) для определения глюкозы, спирта применяют полярограф.

При этом строят график зависимости силы тока (мкА) от концентрации вещества в линейных координатах. Вместо полярографа можно использовать устройство (адаптор), которое подает потенциал на амперометрический датчик (в случае определения глюкозы или спирта), преобразуя ток в разность потенциалов, регистрируемую вольтметром. Вместе с ферментным электродом используют электрод сравнения (например, каломельный). Последний может быть частью комбинированного ферментного Типичные ферментные электроды и их параметры (по Дж. Вудворду, 1988) кислоты L-аминокислот Пенициллин Пенициллиназа рН-электрод 2 недели 0.5–2 мин.

кислота Рис. 3.4. Изготовление ферментных электродов (по Дж. Вудворду, 1988).

А – с использованием физически включенных ферментов, Б – химически связанных ферментов.

электрода, – датчика NH3, СО2, О2, на основе которых делают ферментные электроды для детекции мочевины, аминокислот, спирта и т.д. На рис. 3. показаны конструкции ферментных электродов.

Стабильность работы электродов главным образом зависит от способа иммобилизации фермента: правильного подбора фермента и носителя, концентрации фермента в носителе, стабильности применяемого датчика, на основе которого сделан электрод, а также от условий проведения анализа и условий хранения электрода.

Эра широкого внедрения ферментных электродов в различные сферы аналитики только начинается. Биосенсоры, помимо высокой чувствительности и быстродействия, существенно уменьшают объем анализируемых проб, автоматизируют и упрощают схему анализа. Особенно эффективно применение ферментных методов анализа для контроля состояния окружающей среды, в пищевой и биотехнологической промышленности, в клинической аналитике, а также в научных исследованиях. Широкие перспективы открывают возможности применения мультиферментных систем, в которых один из ферментов обеспечивает специфичность реакции, а другой – детекцию продуктов этой реакции (например, перекисей). Полиферментная аналитика существенно, до 10–11 – 10–14 М, увеличивает Рис. 3.5. Ферментные электроды (по Н. Н. Угаровой, 1987).

А – ферментный электрод на основе стеклянного электрода для измерения рН:

1- металлический электрод, 2 – резиновое кольцо, 3 – полупроницаемая мембрана, 4 – слой фермента, 5 – стеклянная мембрана, проницаемая для ионов водорода, 6 – приэлектродный буферный раствор;

1 – катод, 2 – электрод сравнения, 3 – полупроводниковая полимерная мембрана, чувствительность анализа.

Перспективным методом анализа считают также биолюминесцентный микроанализ на основе светлячковой и бактериальной люцифераз. Эти методы анализа позволяют определять, например, АТФ и НАД с чувствительностью до 10–14 М. Сопряжение люцифераз с другими ферментами, катализирующими протекание реакции с образованием АТФ и НАДН, открывают широкие возможности для создания высокоспецифичных, экспрессных и высокочувствительных методов анализа.

Глава 4. ГЕНЕТИЧЕСКАЯ И КЛЕТОЧНАЯ

ИНЖЕНЕРИЯ



Pages:     | 1 |   ...   | 22 | 23 || 25 | 26 |   ...   | 49 |
 



Похожие работы:

«Серия: Региональная экологическая политика АСТРАХАНСКАЯ ОБЛАСТЬ Москва 2013 УДК 502. 1 (470.318) ББК 000 Я59 Авторы: Чуйков Юрий Сергеевич, докт. биол. наук, проф. Астраханского государственного университета Рецензент: Котовец Валерия Алексеевна, Экологический парламент Волжского Бассейна и Северного Каспия (Волгоград) Ответственный редактор: проф. Яблоков Алексей Владимирович, член-корр. РАН Верстка и дизайн обложки: Щепоткин Дмитрий Викторович Чуйков Ю.С. Астраханская область. Брошюра из...»

«Предисловие 1 РАЗРАБОТАН Научно-исследовательским институтом строительной физики (НИИСФ) Российской Федерации ВНЕСЕН Госстроем России 2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 20 мая 1999 г. За принятие проголосовали Наименование государства Наименование органа государственного управления строительством Республика Армения Министерство градостроительства Республики Армения Республика Казахстан...»

«При составлении каталога были предприняты все усилия для включения в него полной и достоверной информации о компаниях участниках. Данные, опубликованные в каталоге, в полном объеме предоставлены компаниями участниками форума, в связи с чем, ОАО Выставочный павильон Электрификация, не несет ответственность за неточности и упущения в предоставленной информации. © ОАО Выставочный павильон Электрификация, 2013 ПРИВЕТСТВИЕ Участникам и гостям Второго международного форума по энергоэффективности и...»

«Sectoral Integration of Biodiversity in Belarus Contents Introduction Spatial planning and urban development. Transport and road construction Agriculture and land use Forestry and hunting Fisheries Water resources and irrigation Industry and energy Defense Tourism and recreation Education Integration or mainstreaming of biodiversity in other conventions, agreements and processes.. 27 Introduction Belarus reported 1 that Национальной стратегией и планом действий по сохранению и устойчивому...»

«РАДИАЦИОННАЯ ГИГИЕНА УЧЕБНИК ДЛЯ ВУЗОВ Рекомендовано ГОУ ВПО Московская медицинская академия имени И.М. Сеченова в качестве учебника по дисциплине Радиационная гигиена для студентов учреждений высшего профессионального образования, обучающихся по специальности 060104.65 Медико-профилактическое дело 2010 УДК 615.849(075.8) ББК 53.6я73-1 И46 Ильин Л. А., Кириллов В. Ф., Коренков И. П. Радиационная гигиена : учеб. для вузов / Л. А. Ильин, В. Ф. КиИ46 риллов, И. П. Коренков. — М. : ГЭОТАР-Медиа,...»

«ДОБРО ПОЖАЛОВАТЬ В РОССИЙСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Д. И. МЕНДЕЛЕЕВА Путеводитель для абитуриента Москва 2010 УДК 378.666(035) ББК 74;92 Добро пожаловать в Российский химикотехнологический университет им. Д. И. Менделеева: Д56 Путеводитель для абитуриента / сост.: Т. Б. Пузырева, Н. Ю. Денисова. – М.: РХТУ им. Д. И. Менделеева, 2010. – 80 с. Издание предназначено для абитуриентов и знакомит с новыми правилами поступления в высшие учебные заведения, а также с перечнем...»

«Введение...................................................................... 4 История документа............................................................ 4 Почему важны общая позиция неправительственных организаций и переговорный процесс?..................................................... 4 Практическое...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.