«МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ 2-Е ИЗДАНИЕ, ПЕРЕРАБОТАННОЕ И ДОПОЛНЕННОЕ В 3 томах 3 Перевод с английского канд. биол. наук В. П. Коржа, канд. биол. наук Н.В. Сониной, ...»
например, у мембраносвязанных молекул IgM Н-цепь оканчивается гидрофобным участком, закрепляющим ее в липидном бислое плазматической мембраны В-клетки, тогда как у Н-цепей секретируемых молекул IgM имеется вместо этого гидрофильный С-конец, позволяющий молекулам выходить из клетки. Способность В-клетки производить Рис. 18-35. При активации антигеном В-клетка переключается с синтеза антител, связанных с плазматической мембраной, на выработку секретируемой формы тех же антител путем изменения образующихся в клетке мРНК для Н-цепи. Предполагают, что это обусловлено изменением способа расщепления первичных РНК-транскриптов для Н-цепи и их 3'-концевого полиаденилирования. Две формы Н-цепи различаются только Сконцевой областью: мембраносвязанная форма имеет гидрофобный «хвост», удерживающий ее в мембране, тогда как у секретируемой формы этот хвост гидрофильный, что позволяет ей выйти из клетки. Длинный полиаденилированный РНК-транскрипт, определяющий мембраносвязанную форму Н-цепи, имеет донорный и акцепторный сайты сплайсинга, что дает возможность удалить последовательность РНК, кодирующую гидрофильный хвост секретируемой формы. В отличие от этого короткий полиаденилированный РНК-транскрипт, определяющий секретируемую форму, имеет только донорный сайт сплайсинга; поэтому последовательность РНК, которая образуется в результате перекрестного разрывавоссоединения, не может быть удалена.
µ-цепи с константными областями двух различных типов сначала казалась парадоксальной, так как В-клетка содержит лишь одну копию генного сегмента Сµ на гаплоидный геном и использует при выработке антител только один из имеющихся двух генных пулов для Н-цепей. Парадокс был разрешен, когда выяснилось, что активация В-клеток антигеном приводит к изменению способа процессинга РНК-транскриптов для µ-цепи в ядре, как показано на рис. 18-35 (см. также разд. 10.4.5). В переключении с мембраносвязанной на секретируемую форму антител других классов участвует сходный механизм.
18.4.7. В-клетки могут переключаться с выработки одного класса антител на выработку другого [25] В ходе своего развития многие В-клетки переключаются с выработки антител одного класса на выработку антител других классов процесс, называемый переключением класса. Все В-клетки начинают свою деятельность по синтезу антител с выработки молекул IgM, которые встраиваются в плазматическую мембрану и служат рецепторами для антигена. Затем, еще до взаимодействия с антигеном, большая часть В-клеток переходит к одновременному синтезу молекул IgM и IgD, используемых как мембраносвязанные антигенные рецепторы. При стимуляции антигеном некоторые из этих клеток активируются и начинают выделять антитела IgM, преобладающие в первичном гуморальном ответе (разд.
18.2.5). Другие стимулированные антигеном клетки переключаются на выработку антител классов IgG, IgE или IgA; клетки памяти несут эти антитела на своей поверхности (часто одновременно с IgM), а активные В-клетки их секретируют. Молекулы IgG, IgE и IgA в совокупности называют антителами вторичных классов, так как они, по-видимому, образуются только после антигенной стимуляции и преобладают во вторичных гуморальных ответах.
Класс антител определяется константной областью их Н-цепи (разд. 18.3.3). Поэтому способность В-клеток изменять класс вырабатываемых антител без изменения антиген-связывающего участка означает, что одна и та же собранная последовательность, кодирующая Vнобласть, может в разное время ассоциироваться с разными генными сегментами для Сн. Эта способность В-клеток имеет важный функциональный смысл: благодаря ей определенный антиген-связывающий участок, отобранный антигенами окружающей среды, может у данной особи быть распределен между всеми классами иммуноглобулинов и может, таким образом, приобрести все биологические свойства, характерные для каждого из классов.
Переключение класса происходит с помощью двух различных молекулярных механизмов. Когда виргильная В-клетка переходит от выработки одного лишь мембраносвязанного IgM к одновременному синтезу мембраносвязанных IgM и IgD, переключение происходит, вероятно, благодаря изменению процессинга РНК. Клетки продуцируют длинные первичные РНК-транскрипты, содержащие наряду с собранной последовательностью Vн-области как Сµ-, так и С-последовательности. Затем благодаря альтернативному сплайсингу этих транскриптов образуются молекулы IgM и IgD (рис. 18-36). По-видимому, тот же механизм действует при переключении на другие классы мембраносвязанных lg, когда виргильные В-клетки стимулируются антигеном и созревают в клетки памяти, несущие на своей поверхности IgG, IgE или IgA в качестве рецепторов для антигена.
По-иному происходит терминальное созревание активной В-клетки, секретирующей антитела одного из вторичных классов: оно сопровождается необратимым изменением на уровне ДНК - процессом, который называют рекомбинацией переключения. При этом происходит выпадение всех Сн-сегментов «сверху» (т. е. с 5'-стороны по кодирующей цепи) от определенного сегмента, предназначенного для экспрессии в клетке (рис. 18-37). Доказательство того, что этот этап переключения класса связан с делецией ДНК, было получено в опытах с клетками миеломы:
оказалось, что клетки, секретирующие IgG, не содержат ДНК, кодирующей Сµ- и C-области, а клетки, секретирующие IgA, не содержат ДНК для С-области Н-цепей всех остальных классов.
Рис. 18-37. Пример перестройки ДНК, происходящей при «переключении» Сн-областей. Когда В-клетка, вырабатывающая антитела IgM с участием собранной последовательности VDJ, стимулируется антигеном и созревает в клетку, секретирующую антитела IgA, происходит удаление участка ДНК между последовательностью VDJ и генным сегментом С. Специфицические участки ДНК (переключающие последовательности, показаны цветными кружками), расположенные «выше» каждого Сн-сегмента (за исключением C), рекомбинируют друг с другом, и в результате 18.4.8. Идиотопы молекул антител служат основой иммунологической сети [26] Антитела не только защищают организм от инфекций, но и играют важную роль в регуляции самих иммунных ответов. Окончание гуморального ответа на антиген бывает отчасти обусловлено связыванием секретируемых антител с антигеном, который в результате не может присоединяться к рецепторам В-клеток, поэтому стимуляция В-клеток прекращается. Наряду с таким простым ингибированием по типу обратной связи антитела могут участвовать и в более тонком механизме регуляции иммунитета, выступая как часть сложной иммунологической сети.
Иммуноглобулины сами могут действовать как антигены, и можно получить антитела, которые будут узнавать антигенные детерминанты как константных, так и вариабельных участков цепей Ig. Антигенные детерминанты (эпитопы) вариабельных областей L- и Н-цепей, расположенные на антиген-связывающем участке антитела, называются идиотопами (рис. 18-38). Каждый специфический антиген-связывающий участок имеет свой характерный набор идиотопов, поэтому у животного, обладающего миллионами различных антиген-связывающих участков, будут также миллионы различных идиотопов. Поскольку в организме каждый отдельный идиотоп присутствует в очень малом количестве, животное не толерантно к своим собственным идиотопам, и если его надлежащим образом иммунизировать каким-либо из его собственных антител, организм животного будет давать и Т-, и В-клеточные иммунные ответы.
Можно ожидать, что животное, иммунизированное антигеном А, будет сначала вырабатывать большие количества антител к А, затем антитела к идиотопам этих антител к А, а затем в свою очередь антитела к антиидиотопическим антителам и т. д. Действительно, такой тип реакций, дающий «сеть» антител, был продемонстрирован при некоторых иммунных ответах, однако его роль в иммунорегуляции остается неясной.
Как мы увидим позже, рецепторы Т-клеток имеют много общего с мембраносвязанными антителами: они существуют в миллионах форм, каждая из которых имеет свой собственный антиген-связывающий участок и набор идиотопов. По-видимому, в организме животного содержатся как антитела, так и Т-клеточные рецепторы, узнающие большую часть собственных идиотопов организма. При этом в среднем, вероятно, антигенсвязывающий участок узнаёт по меньшей мере один идиотоп собственной иммунной системы организма. Таким образом, антиген-связывающие участки иммунной системы потенциально объединены в сложную сеть взаимодействий антиидиотопов (рис. 18-39). Подобно нейронам в нервной системе, многие лимфоциты, возможно, в Рис. 18-38. Идиотоп представляет собой антигенную детерминанту молекулы антитела, находящуюся в антиген-связывающем участке или около него. Он может быть образован областью VH, областью VL или обеими областями. Каждый из различных антиген-связывающих участков имеет свой собственный уникальный набор идиотопов, который составляет его идиотип. Идиотопы ассоциированы также и с антиген-связывающими котранскрибируется затем вместе с соответствующей последовательностью Собласти, что дает молекулу мРНК, кодирующую всю полипептидную цепь.
сывороточных белков, которые могут активироваться комплексами антигенантитело или микроорганизмами и претерпевать каскад протеолитических Рис. 18-39. Отдельный лимфоцит может быть функционально связан с другими лимфоцитами через взаимодействия идиотоп - антиидиотоп. Размеры такой идиотопической сети в принципе могут быть огромными, так как каждый лимфоцит, взаимодействующий, как показано на рисунке, с анти-А-лимфоцитом, может сходным образом реагировать и с другими лимфоцитами.
Пока не ясно, насколько взаимодействия антиидиотопического типа важны для регуляции иммунных ответов.
активации, усиливают защитную реакцию путем расширения кровеносных сосудов и привлечения фагоцитирующих клеток к местам инфекции.
Кроме того, комплемент повышает способность фагоцитирующих клеток связывать, поглощать и разрушать атакуемые ими микроорганизмы.
Лица с недостаточностью одного из главных компонентов комплемента (СЗ) подвержены частым бактериальным инфекциям, точно так же как и лица с недостаточностью самих антител. У комплемент-дефицитных индивидуумов возможны также болезни, связанные с осаждением иммунных комплексов (комплексов антиген-антитело) в небольших кровеносных сосудах кожи, суставов, почек и мозга, где эти комплексы вызывают воспаление и разрушение ткани. Поэтому можно думать, что комплемент в норме способствует растворению таких комплексов, когда они образуются в процессе иммунного ответа.
18.5.1. Активация комплемента представляет собой усилительный механизм в форме каскада протеолитических реакций; центральную роль играет расщепление белка СЗ [27] Комплемент состоит примерно из 20 взаимодействующих белков; часть из них - реагирующие компоненты (С1-С9, фактор В и фактор D), а остальные - регуляторные. Все это растворимые белки. Они образуются главным образом в печени и циркулируют в крови и тканевой жидкости.
Большинство из них неактивно до тех пор, пока не будет приведено в действие либо непосредственно внедрившимся микроорганизмом, либо через посредство иммунного ответа. Окончательный результат активации комплемента - объединение поздних компонентов комплемента (С5, С6, С7, С8 и С9) в большой комплекс, атакующий мембраны, который вызывает лизис микробной клетки.