WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 19 | 20 || 22 | 23 |   ...   | 88 |

«МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ 2-Е ИЗДАНИЕ, ПЕРЕРАБОТАННОЕ И ДОПОЛНЕННОЕ В 3 томах 3 Перевод с английского канд. биол. наук В. П. Коржа, канд. биол. наук Н.В. Сониной, ...»

-- [ Страница 21 ] --

16.4.1. Асимметрия, определяемая пространственной организацией среды, может нарастать за счет положительной обратной связи [34, 35] Формирование пространственной организации начинается с создания асимметрии: будущая голова должна отличаться от хвоста, спина от живота. Мы уже видели, что у животных большинства видов яйцеклетки Рис. 16-39. Контроль полярности яйца дрозофилы со стороны среды, окружающей ооцит в яичнике. В норме питающие клетки поставляют запасаемые вещества на один из полюсов ооцита, который соответствует будущей голове. У мутантов Dicephalic ооцит расположен в центре фолликула и симметричен по отношению к питающим клеткам. Вследствие этого возникает симметричное яйцо, дающее начало эмбриону с асимметричны (см. разд. 16.2.2). Асимметрия зачастую возникает в яйцеклетке в процессе ее развития в яичнике. У насекомых, например, ооцит (будущая яйцеклетка) расположен в одном из концов фолликула, где одной стороной он соприкасается с питающими клетками, передающими ему запасаемые вещества по цитоплазматическим мостикам (см. разд. 15.3.4). По всей вероятности, асимметрическое поступление запасаемых веществ в ооцит создает химические различия между разными участками цитоплазмы яйца, которые соответствуют в будущем голове и хвосту эмбриона (см. рис. 16-39).

Исходно асимметрия может быть не слишком выражена: далее клетки воспользуются своими собственными внутренними механизмами для усиления слабой асимметрии и превратятся в поляризованные. Например, у яйцеклетки морской водоросли Fucus ризоид, или корешок, образуется только на одном конце. В норме ризоид растет вниз и от света. Таким образом, сила тяготения и освещенность вместе определяют, на какой стороне он образуется. Такая полярность обусловлена потоком ионов Са2+ через клетку (см. разд. 20.5.6): полагают, что случайный свет или сила тяготения вызывают появление небольшой асимметрии в распределении белков, участвующих в транспорте ионов Са2+ через плазматическую мембрану. Эта асимметрия позже усиливается за счет механизмов положительной обратной связи (см. рис. 20-66, разд. 20.5.7).

Таким же образом положительная обратная связь может действовать и на других стадиях развития многоклеточных организмов.

Например, при делении поляризованной клетки дочерние клетки наследуют слабо выраженную асимметрию и, усилив ее, становятся более поляризованными. Так происходит усиление поляризации в ряду клеточных поколений. Поэтому в принципе для возникновения сложной структуры многоклеточных организмов межклеточный обмен сигналами не обязателен (рис. 16-40). Возможно, что некоторые процессы формирования пространственной организации, зависящие от автономного поведения клетки, можно объяснить действием такого механизма.

Однако, как правило, формирование пространственной организации у многоклеточных организмов зависит и от межклеточных сигналов.

И здесь положительная обратная связь также выполняет важную роль усиления исходно слабых асимметрий, создавая локализованные группы клеток, свойства которых очень различны. Такие группы клеток могут в свою очередь испускать сигналы, влияющие на развитие соседних клеток.

Простейшим примером может служить примитивный организм Hydra. Тело гидры имеет форму трубки, на одном конце которой расположена «голова», снабженная щупальцами, и на другом конце - «нога» (см. рис. 1-33). Гидра известна способностью восстанавливать целостность организма после удаления какой-либо из его частей. Множество экспериментов по ампутации «головы», выполненных на гидре, позволяют предположить, что процесс регенерации осуществляРис. 16-40. Сложная многоклеточная структура в принципе ется благодаря локальному аутокаталитическому процессу, усиливающему слабую тенденцию клеток к приобретению свойств клеток «головы». В создании данной утраченной структуры принимают участие все клетки тела; они создают ингибирующий сигнал, диффундирующий вдоль продольной оси тела, и исключающий условия формирования «головы» в иных участках организма (рис. 16-41).

16.4.2. Локализованный участок, испускающий сигнал, может часто создавать градиент морфогена [36] Влияние головы на остальную часть тела гидры, которое характеризуется значительным радиусом действия, представляет собой весьма распространенное явление. Во многих развивающихся системах небольшие участки ткани способны приобретать какие-либо особые свойства, превращающие их в источник сигнала, который распространяется через прилежащие участки ткани, и может контролировать их поведение. В частности, сигналом могут служить диффундирующие молекулы, секретируемые сигнализирующим участком. Предположим, что по мере диффузии сигнального вещества через соседние ткани происходит его разрушение. В этом случае наивысшая концентрация сигнального вещества будет вблизи источника. С увеличением расстояния от источника количество этого вещества будет уменьшаться, вследствие чего в ткани возникнет концентрационный градиент (см. рис. 16-42). На разных расстояниях от источника сигнала клетки будут подвергаться различному действию этого вещества в зависимости от его концентрации и благодаря этому приобретут разные свойства. Гипотетическое вещество, подобное вышеупомянутому, концентрация которого прочитывается клетками и позволяет последним определить расстояние Рис. 16-42. Если какое-то вещество образуется в определенной точке и по мере диффузии из этой точки разрушается, то создается градиент концентрации этого вещества с максимумом в исходной точке. Такое вещество может служить морфогеном, локальная концентрация которого контролирует поведение клеток в соответствии с их расстоянием от источника вещества.

относительно неких ориентиров или «маяков», называется морфогеном. Сигнализирующий участок способен с помощью морфогена контролировать формирование пространственной организации больших полей прилежащей ткани. Градиенты морфогена представляют собой простое и эффективное средство обеспечения клеток позиционной информацией. Именно поэтому морфогены и оказались в центре нашего внимания. Здесь необходимо добавить, что клетки эмбриона способны приобретать позиционную информацию иными способами. Рис. 16- иллюстрирует одну из таких альтернатив: здесь в основе механизма лежат индукционные взаимодействия короткого радиуса действия.

И хотя известно множество примеров сигнализирующих участков, которые (с нашей точки зрения) через градиент морфогена могли бы оказывать воздействие на значительном расстоянии, на практике в настоящее время мы имеем дело всего лишь с несколькими случаями непосредственной химической идентификации морфогена. Как правило, известно лишь, что при изменении местоположения предполагаемого сигнализирующего участка после пересадки или иным способом, происходит изменение структуры прилежащих участков ткани. Наблюдения такого рода не позволяют выяснить, насколько изменения структуры отдельных клеток определяются прямым ответом на действие морфогена и каков вклад от взаимодействия реагирующих клеток. Вероятно, в большинстве случаев исходный градиент морфогена вызывает импульс, обеспечивающий формирование пространственной организации, широкого спектра действия, а локальные межклеточные взаимодействия участвуют в проработке деталей. Накапливаются данные, свидетельствующие о том, что именно таким образом возникает пространственная организация тела насекомых; это будет обсуждаться ниже. Здесь же мы рассмотрим, какой тип пространственной организации может быть обусловлен действием градиента морфогена в поле клеток, каждая из которых реагирует назависимо.

16.4.3. Порог реакции клетки обусловливает строго определенный характер ее детерминации, несмотря на плавный градиент морфогена [37] При наличии плавного градиента концентрации морфогена можно ожидать, что и свойства клеток в разных участках будут изменяться постепенно. Такие слабо выраженные различия действительно встречаются в некоторых тканях. Но наибольший интерес вызывает возникновение резких качественных различий - таких, например, как различия между хрящевыми и мышечными клетками, не имеющими переходных форм. В популяции исходно однородных клеток благодаря порогу реакции на плавно изменяющийся сигнал могут возникать резкие различия между клетками: в каждой из реагирующих клеток эффект небольшого приращения сигнала может быть усилен по принципу положительной обратной связи так, что клетки, подвергающиеся действию сигнала, интенсивность которого изменяется слабо, выберут различные пути развития в зависимости от того, подверглись ли они действию сигнала над- или подпороговой интенсивности. При этом для каждого из сигналов могут существовать несколько порогов интенсивности, и одна переменная может контролировать несколько выборов. Если под влиянием какого-то фактора клетка определенно вступила на путь, ведущий к одному из стабильных состояний, то она будет развиваться в выбранном направлении даже в отсутствие фактора, исходно контролировавшего выбор. На этом пути временные, зависящие от положения клетки воздействия могут вызывать эффект «запоминания» воздействий, которые претерпела клетка. Выбор клеткой опреРис. 17-48. Микрофотография поперечного среза компактного вещества длинной кости. Видны контуры тоннелей, проделанных остеокластами, а затем заполненных с помощью остеобластов. Срез приготовлен методом шлифования. Плотный матрикс сохранился, но клетки разрушены; однако отчетливо видны лакуны и канальцы, которые были заполнены остеоцитами и их отростками. Чередующиеся светлые и темные концентрические кольца соответствуют изменяющейся ориентации волокон коллагена в последовательных слоях костного матрикса, отложенного остеобластами, выстилавшими стенки в разные периоды жизни особи. (Такая картина получается при наблюдении образца между двумя частично скрещенными поляроидными фильтрами.) Обратите внимание на то, что часть более старой системы концентрических костных слоев (внизу справа, с узким центральным каналом) частично резорбирована и заменена более новой системой, в которой центральный канал все еще остается широким - повидимому, потому, что он еще находится в процессе заполнения.

В этих процессах еще много непонятного. Кости, например, обладают удивительной способностью перестраивать свою структуру таким образом, чтобы приспособиться к испытываемым нагрузкам. Это означает, что накопление и разрушение матрикса каким-то образом регулируются локальными механическими напряжениями. Какие механизмы определяют, будет ли матрикс откладываться на поверхности данной кости остеобластами или разрушаться остеокластами, не известно. Вероятно, важную роль в этом играют факторы роста, выделяемые костными клетками, заключенными в толще матрикса (разд. 17.7.1). Эти факторы могли бы высвобождаться при разрушении матрикса или при воздействии соответствующих нагрузок.

17.8.3. В развивающемся организме остеокласты разрушают хрящ, чтобы проложить путь для роста кости [44] Как полагают, замена хряща костью в процессе развития организма тоже зависит от активности остеокластов. По мере созревания хряща клетки в некоторых участках значительно увеличиваются в размерах за счет окружающего матрикса, а сам матрикс минерализуется, подобно кости, в результате отложения кристаллов фосфата кальция. В то же время хондроциты в таких участках набухают и гибнут, оставляя большие пустоты. В эти пустоты внедряются остеокласты и кровеносные сосуды, разрушающие остатки хрящевого матрикса, а следующие за ними по пятам остеобласты начинают откладывать костный матрикс. Единственное, что остается от хряща в длинных костях взрослого животного, - это тонкий слой, образующий гладкое покрытие в области суставов, где одна кость сочленяется с другой (рис. 17-49).

Однако в соединительной ткани, окружающей кость, сохраняются клетки, способные к образованию нового хряща. В случае перелома кости клетки из прилежащей области проведут починку, воспроизведя «на скорую руку» первоначальный эмбриональный процесс: сначала откладывается хрящ, чтобы заполнить брешь, а затем хрящ заменяется костью.



Pages:     | 1 |   ...   | 19 | 20 || 22 | 23 |   ...   | 88 |
 


Похожие работы:

«Е. М. Бенуж Тесты по биологии. 7 класс Елена Бенуж Сборник содержит тестовые задания для проверки знаний по курсу Биология. Признаки живых организмов. Задания предназначены для работы с учебником В. Б. Захарова, Н. И. Сонина Биология. Многообразие живых организмов. 7 класс, рекомендованным Министерством образования и науки РФ и включенным в Федеральный перечень учебников. Пособие включает различные типы тестов для тематической и итоговой проверки, которые позволят учителю сделать опрос более...»

«О порядке ведения Красной книги природы Ленинградской области В соответствии с приказом государственного комитета Российской Федерации по охране окружающей среды от 3 октября 1997 года N 419-а Об утверждении порядка ведения Красной книги Российской Федерации, во исполнение пункта 2 постановления Правительства Ленинградской области от 27 декабря 2004 года N 315 О Красной книге природы Ленинградской области и на основании постановления Правительства Ленинградской области от 12 ноября 2004 года N...»

«Государственный комитет по лесному хозяйству Республики Тыва ЛЕСОХОЗЯЙСТВЕННЫЙ РЕГЛАМЕНТ ГКУ РТ БАЛГАЗЫНСКОЕ ЛЕСНИЧЕСТВО Исполнитель: Общество с ограниченной ответственностью Научно – Проектный Центр Инженерно-Изыскательских Работ Генеральный директор Попов П. И. Воронеж, 2011 г. Оглавление Введение.. 6 Глава 1 Общие сведения.. 13 Краткая характеристика.. 1.1 13 Наименование и местоположение лесничества. 1.1.1 13 Общая площадь лесничества и участковых лесничеств. 1.1.2 13 Распределение...»

«ИНТРОДУКЦИЯ РАСТЕНИЙ ПРИРОДНОЙ ФЛОРЫ СССР СПРАВОЧНИК ИЗДАТЕЛЬСТВО НАУКА МОСКВА 1979 В книге обобщен 30-летний опыт интродукции 2160 видов растений природной флоры СССР из различных ботанико-географических регионов, многие из которых впервые испытываются в культуре. Излагаются данные об источниках получения исходного материала, дается характеристика жизненной формы, показаны особенности сезонного ритма интродуцируемых растений, срок вступления в генеративную фазу, приведены сведения о размере...»

«Байметов К.И., Турдиева М.К., Ражаметов Ш.Н. ОСОБЕННОСТИ ВОЗДЕЛЫВАНИЯ МЕСТНЫХ СОРТОВ АБРИКОСА В УЗБЕКИСТАНЕ ТАШКЕНТ 2010 В данной публикации изложены результаты регионального проекта In situ/On farm сохранение и использование агробиоразнообразия (плодовые культуры и их дикие сородичи) в Центральной Азии. Проект осуществляется в пяти странах – Казахстан, Кыргызстан, Таджикистан, Туркменистан, Узбекистан и координируется Bioversity International при финансовой поддержке Глобального Экологического...»

«СХЕМА КОМПЛЕКСНОГО ИСПОЛЬЗОВАНИЯ И ОХРАНЫ ВОДНЫХ ОБЪЕКТОВ БАССЕЙНА РЕКИ ВОЛХОВ Книга 1 Общая характеристика речного бассейна Пояснительная записка 1 ПРОЕКТ Схема комплексного использования и охраны водных объектов Пояснительная записка к книге 1 Общая характеристика речного бассейна Общая часть Основной задачей разработки СКИОВО, включая НДВ, бассейна реки Волхов является формирование инструментария принятия управленческих решений по достижению устанавливаемых СКИОВО бассейна реки Волхов...»

«БИОСФЕРА История термина • Биосфера (греч. bios жизнь, sphaira шар) сфера жизни. Ввёл это понятие немецкий учёный, профессор Лейпцигского университета Ф.Ратцель (1845-1904) в книге Органический мир и его происхождение (1869). В этой книге органическое население Земли в целом он рассматривал как живой покров планеты, а её поверхность называл пространством жизни - der Lebensraum. Это слово в современном немецком языке понимается как синоним биосферы • Сам же термин биосфера создал австрийский...»

«Москва Высшая школа 2003 УДК 574/578 ББК 28.0 Б 63 Авторы: В.Н. Ярыгин, В.И. Васильева, И.Н. Волков, В.В. Синелыцикова Рецензент: кафедра медицинской биологии и генетики Тверской государственной медицинской академии (зав. кафедрой — проф. Г.В. Хомулло); кафедра биологии Ижевской государственной медицинской академии (зав. кафедрой — проф. В.А. Глумова) Б 63 Биология. В 2 кн. Кн. 1: Учеб. для медиц. спец. Вузов / В.Н. Ярыгин, В.И. Васильева, И.Н. Волков, В.В. Синелыцикова; Под ред. В.Н. Ярыгина....»

«Конец мусорной цивилизации: пути решения проблемы отходов. Издание подготовлено при поддержке Представительства общества Оксфам в РФ Конец мусорной цивилизации: пути решения проблемы отходов. Автор - Сапожникова Галина Павловна, кандидат биологических наук, член правления АОН Семейный центр Три поколения Редактор – Новицкий С.Л. Техническая помощь в подготовке материалов – Ахметов Л. Автор рассматривает проблему сбора, хранения и переработки мусора, описывает весь спектр проблем, анализирует...»

«ПОДСЕКЦИЯ ЭКОЛОГИЯ РАСТЕНИЙ Экология эндемика Западного Забайкалья Astragalus chorinensis Bunge Бусоева М.В. (Улан-Удэ) Республика Бурятия (РБ) – один из уникальных регионов России. В географическом отношении она находится на стыке Центральной и Северной Азии и на пограничном рубеже взаимного влияния Атлантики и Тихого океана. Весь комплекс природных факторов обусловил большое разнообразие, оригинальность и неповторимость её флоры и растительности. Астрагал хоринский (Astragalus chorinensis...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.