WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 || 3 | 4 |   ...   | 88 |

«МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ 2-Е ИЗДАНИЕ, ПЕРЕРАБОТАННОЕ И ДОПОЛНЕННОЕ В 3 томах 3 Перевод с английского канд. биол. наук В. П. Коржа, канд. биол. наук Н.В. Сониной, ...»

-- [ Страница 2 ] --

15.1.3. Новые гены появляются в результате дупликаций и дивергенции Для эволюции сложного организма требуется нечто большее, чем улучшение уже имеющихся генов: нужны новые гены для осуществления новых функций. Как они появляются?

Многие белки многоклеточного животного могут быть сгруппированы в семейства: коллагены, глобины, сериновые протеазы и т. п.

Белки одного семейства близки как по своей функции, так и по аминокислотной последовательности. Вряд ли можно сомневаться в том, что гены белков каждого такого семейства произошли от единственного предкового гена в результате процессов дупликации и дивергенции (разд. 10.5.3).

Разные члены одного семейства белков часто бывают характерны для различных тканей тела, где они выполняют похожие, но несколько различающиеся функции. Создание новых генов благодаря дивергенции и специализации имеющихся играло, очевидно, решающую роль в эволюции сложных многоклеточных организмов. В этом отношении диплоидные организмы обладают важным преимуществом: у них имеется добавочная копия каждого гена, и эта копия может мутировать и служить исходным материалом для создания чего-то нового. Гаплоидные виды не могут так же легко вступать на путь, ведущий к увеличению и усложнению генома. Чтобы механизм этих процессов стал ясен, нам нужно будет несколько подробнее рассмотреть связь между половым размножением и диплоидией.

15.1.4. Половое размножение сохраняет диплоидность у диплоидных видов У диплоидного организма имеются две копии каждого гена - по одной от каждого из родителей; однако для выживания и нормальной жизнедеятельности в большинстве случаев бывает достаточно одной копии. Мутация, нарушающая функцию жизненно важного гена, для гаплоидного организма летальна, но она может оказаться безвредной организм гибнет. Однако в диЧукучановые (Catostomidae)-семейство пресноводных рыб отряда карпообразных.- Прим. ред.

Рис. 15-5. Из этой схемы видно, каким образом при половом размножении диплоидные организмы сохраняют диплоидность в ходе эволюции. Для простоты рассматриваются только летальные рецессивные мутации.

Аналогичным образом обстоит дело и с вредными рецессивными мутациями.

плоидном организме подобного рода мутация в одной из двух копий гена не просто терпима - она приносит пользу. Даже небольших преимуществ, которые получит организм благодаря новому мутантному гену, будет достаточно, чтобы перекрыть ущерб, нанесенный потерей одной из двух исходных копий гена: гетерозиготная особь будет извлекать пользу как из старой, так и из новой функции гена. Гомозиготы, имеющие две копии старого аллеля или две копии нового, окажутся менее приспособленными. В подобных случаях, когда имеется преимущество гетерозигот, мутантный ген быстро распространяется в диплоидной популяции с половым размножением - до тех пор, пока не будет достигнуто равновесие, при котором и старые, и новые аллели представлены с высокой частотой и доля гетерозиготных особей велика. Это явление называется сбалансированным полиморфизмом. Однако кое-чем приходится расплачиваться: при скрещивании двух гетерозигот значительная часть потомков в соответствии с обычными законами Менделя окажется гомозиготной и поэтому хуже приспособленной. Но такое положение не будет сохраняться вечно - из него есть выход.

15.1.6. Диплоидный вид может быстро обогащать свой геном, приобретая новые гены Время от времени у всех организмов происходит спонтанное удвоение генов: хромосома, содержащая одну копию гена G, в результате ошибки в репликации ДНК дает начало хромосоме, в которую входят уже две копии этого гена, расположенные одна за другой. Такие дупликации сами по себе не дают никаких преимуществ и встречаются, как правило, у очень немногих особей. Предположим, однако, что дупликация произошла в локусе, содержащем полезный мутантный аллель G*, который с высокой частотой присутствует в популяции в связи с отбором в пользу гетерозигот и сосуществует в геноме с исходным аллелем G (рис. 15-6). Тогда велика вероятность того, что в диплоидной клетке, содержащей хромосому GG (несущую дупликацию), ее гомолог будет содержать аллель G*, так что получится генотип GG/G*. Затем в результате генетической рекомбинации в мейозе (см. ниже) могут образоваться гаметы с генотипом GG*. В этих гаметах исходный ген G и мутантный G*.

расположенные один за другим, не будут уже двумя аллелями, конкурирующими за один и тот же локус; теперь это два отдельных гена, каждый из которых занимает собственный локус. Такая комбинация выгодна, и она станет быстро распространяться, пока, наконец, вся популяция не будет состоять из гомозигот GG*/GG* (см. рис. 15-6). Преимущество особей с таким генотипом состоит не только в обладании обоими генами - старым G и новым G*, но и в том, что они могут передавать это преимущество всем своим потомкам.

Таким образом, у диплоидного вида с половым размножением могут возникать новые гены в результате мутаций в добавочных копиях имеющихся генов; эти новые гены могут распространиться в популяции благодаря отбору в пользу гетерозигот, причем не будут потеряны и исходные гены; и наконец, новые гены могут дополнительно включаться в геном в результате процессов дупликации генов и генетической рекомбинации. Такая последовательность событий возможна только у диплоидных видов. Обогащение генома у гаплоидного вида связано с большими трудностями. Если в процессе приобретения нового гена вид должен сохранить и старый ген, то ему придется ждать возникновения нужной мутации у одной из очень немногих особей, у которых уже произошла дупликация соответствующего локуса. А поскольку и мутации, и дупликации в определенном локусе происходят очень редко, гаплоидному виду приходится дожидаться совпадения этих событий Рис. 15-6. Возникновение нового гена (G*) по схеме «мутация распространение дупликация» в процессе полового размножения чрезвычайно долго (рис. 15-7). Детальные расчеты показывают, что обычно (за исключением ситуаций, когда частота дупликаций генов очень велика) диплоидный организм способен расширять свой геном и добавлять к нему новые гены с новыми функциями в сотни или даже тысячи раз быстрее, чем это происходит у гаплоидного организма. Наиболее ярко различие выражено в отношении тех мутаций, которые происходят с низкой частотой, а именно такие редкие мутации необходимы для обновления генома.

Итак, половое размножение идет «рука об руку» с диплоидностью, которая в свою очередь обеспечивает особо благоприятные условия для создания более крупного, более сложного и более гибкого генома. Конечно, эволюция может протекать по-разному, и указанный нами путь дупликаций и дивергенции генов, безусловно, далеко не единственный. Тем не менее, половое размножение, по-видимому, оказало огромное влияние на истоки и способы распространения в популяции генетических изменений, сделав возможным появление столь сложных организмов, как мы сами.

Теперь можно перейти к детальному описанию клеточных механизмов полового процесса. В последующих разделах сначала будет рассмотрен мейоз, в ходе которого осуществляется генетическая рекомбинация и из диплоидных клеток образуются гаплоидные гаметы; затем мы обратимся к самим гаметам и, наконец, познакомимся с процессом оплодотворения, при котором гаметы сливаются, образуя новый диплоидный организм.

При половом размножении происходит циклическое чередование диплоидного и гаплоидного состояний: диплоидная клетка делится путем мейоза, порождая гаплоидные клетки, а гаплоидные клетки попарно сливаются при оплодотворении и образуют новые диплоидные клетки.

Во время этого процесса происходит перемешивание и рекомбинация геномов, в результате чего появляются особи с новыми наборами генов.

Высшие растения и животные большую часть жизненного цикла проводят в диплоидной фазе, а гаплоидная фаза у них очень короткая. Вероятно, процесс эволюции благоприятствовал половому размножению, так как случайная генетическая рекомбинация увеличивала шансы организмов на то, что хотя бы некоторые из их потомков выживут в непредсказуемо изменчивом мире. Половой процесс необходим также для поддержания диплоидности; он способствует созданию условий для быстрой выработки новых генов у высших растений и животных.

15.2. Мейоз Понимание того факта, что половые клетки гаплоидны и поэтому должны формироваться с помощью особого механизма клеточного деления, пришло в результате наблюдений, которые к тому же едва ли не впервые навели на мысль, что хромосомы содержат генетическую информацию. В 1883 г. было обнаружено, что ядра яйца и спермия определенного вида червей содержат лишь по две хромосомы, в то время как в оплодотворенном яйце их уже четыре. Хромосомная теория наследственности могла, таким образом, объяснить давний парадокс, состоящий в том, что роль отца и матери в определении признаков потомства часто кажется одинаковой, несмотря на огромную разницу в размерах яйцеклетки и сперматозоида.

Еще один важный смысл упомянутого открытия состоял в том, что половые клетки должны формироваться в результате ядерного деления особого типа, при котором весь набор хромосом делится точно пополам. Деление такого типа носит название мейоз (слово греческого происхождения, означающее «уменьшение». Название другого вида деления клеток-митоз-происходит от греческого слова mitos, означающего «нить»; в основе такого выбора названия лежит нитеподобный вид хромосом при их конденсации во время деления ядра - данный процесс имеет место как при обычном, так и при мейотическом делении.) Поведение хромосом во время мейоза, когда происходит редукция их числа, оказалось более сложным, чем предполагали раньше. Поэтому важнейшие особенности мейотического деления удалось установить только к началу 30-х годов в итоге огромного числа тщательных исследований, объединивших цитологию и генетику.

15.2.1. При мейозе происходит не одно, а два деления ядра Диплоидные ядра содержат по две копии каждой хромосомы (это не относится лишь к половым хромосомам), одна из которых происходит от мужского родителя, а другая - от женского. Эти две копии называются гомологами, и в большинстве клеток они ведут себя как совершенно независимые хромосомы. Когда благодаря репликации ДНК каждая хромосома удваивается, две ее копии остаются сначала соединенными вместе (их называют сестринскими хроматидами). При обычном клеточном делении (описанном в гл. 13) сестринские хроматиды выстраиваются в экваториальной плоскости веретена таким образом, что их кинетохорные волокна направлены к противоположным полюсам. В результате сестринские хроматиды в анафазе отделяются друг от друга (теперь они называются хромосомами), и каждая дочерняя клетка наследует по одной копии каждого гомолога (см. разд. 13.5). Между тем гаплоидные гаметы, образовавшиеся при делении диплоидной клетки путем мейоза, содержат по одной хромосоме каждой гомологичной пары (отцовского или материнского происхождения), т. е. только половину исходного числа хромосом. В связи с этим к аппарату клеточного деления здесь предъявляется дополнительное требование: гомологи должны иметь возможность «узнавать» друг друга и соединяться в пары, перед тем как они выстроятся на экваторе веретена. Такое спаривание, или конъюгация, гомологичных хромосом материнского и отцовского происхождения происходит только в мейозе (рис. 15-8); подробности этого процесса будут рассмотрены позже.

При наличии механизма конъюгации отцовских и материнских гомологичных хромосом и их последующего расхождения мейоз мог бы в принципе осуществляться путем видоизменения одного митотического цикла, если бы в нем выпала фаза удвоения хромосом (S) и гомологи спаривались перед фазой М. Тогда в результате следующего клеточного деления могли бы непосредственно образоваться две гаплоидные клетки.



Pages:     | 1 || 3 | 4 |   ...   | 88 |
 


Похожие работы:

«Закон Азербайджанской Республики О рыболовстве Настоящий Закон определяет правовые основы организации и управления рыболовством, увеличением рыбных запасов, их использования и охраны в Азербайджанской Республике. Глава I. Общие положения Статья 1. Основные термины и понятия Термины и понятия, используемые в настоящем Законе, выражают следующие значения: рыбоводство - система биологических, биотехнических, технологических и организационных мероприятий, направленных на увеличение,...»

«НАЦИОНАЛЬНЫЙ ДОКЛАД О СОСТОЯНИИ ОКРУЖАЮЩЕЙ СРЕДЫ В РЕСПУБЛИКЕ КАЗАХСТАН В 2010 ГОДУ Алматы, 2011 УДК 5021 504 ББК 20.1 Н 34 НАЦИОНАЛЬНЫЙ ДОКЛАД О СОСТОЯНИИ ОКРУЖАЮЩЕЙ СРЕДЫ В РЕСПУБЛИКЕ КАЗАХСТАН В 2010 ГОДУ Под редакцией М. К. Баекеновой. РГП КазНИИЭК МООС РК—Алматы, 2011 ISBN 9965-9955-0-8 В монографии дана оценка экологических показателей РК в 2010г. Доклад написан с учетом рекомендаций руководства ЕЭК ООН по экологическим показателям и по подготовке оценочных докладов для стран ВЕКЦА. Для...»

«БИОЛОГИЯ 5-9 классы ПОЯСНИТЕЛЬНАЯ ЗАПИСКА. Статус документа. Программа по биологии составлена на основе федерального компонента государственного стандарта основного общего образования. Программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса и последовательность изучения тем и разделов учебного предмета с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся. Программа...»

«Дисциплина Устойчивое развитие и социальная экология Полный конспект лекций Тема 1. Предмет социальной экологии как современной междисциплинарной науки. Особенности социально-экологических исследований. План 1. Определение социальной экологии. 2. Особенности социально-экологических исследований. Основные категории Социальная экология. Основное содержание темы Социальная экология — это научная дисциплина, изучающая закономерности совместного развития природы и общества. Социальная экология —...»

«УТВЕРЖДАЮ УТВЕРЖДАЮ СОГЛАСОВАНО Директор Саратовского Генеральный директор Руководитель филиала Института проблем ООО ДИАЛЛ АЛЬЯНС Управления Федеральной экологии и эволюции службы по надзору в сфере им. А.Н. Северцова РАН природопользования _ А.В.Хрустов С.В. Сокольников _ А.П. Трегуб _ _ 2008 г. _ 2008 г _ 2008 г ОТЧЕТ о научно-исследовательской работе МОНИТОРИНГ БИОРАЗНООБРАЗИЯ НА ЛИЦЕНЗИОННОМ УЧАСТКЕ ООО ДИАЛЛ АЛЬЯНС В КРАСНОКУТСКОМ И ФЕДОРОВСКОМ РАЙОНАХ САРАТОВСКОЙ ОБЛАСТИ по договору №...»

«Часть 4. Научные исследования в области охраны окружающей среды 4.1. Основные результаты научно­исследовательских работ, выполненных в 2010 г. ИВЭП ДВО РАН В 2010 г. Институт водных и экологических проводил исследования по трем инициативным научно-исследовательским темам: Трансформация экосистем и пути оптимизации природопользования в регионах нового освоения (номер гос. регистрации 01.2.00 951058), Динамика водных экосистем муссонных областей Дальнего Востока в условиях изменения природных и...»

«НАЦИОНАЛЬНЫЙ ПЛАН ДЕЙСТВИЙ ПО СОХРАНЕНИЮ СНЕЖНОГО БАРСА (Uncia uncia) В КАЗАХСТАНЕ г. Астана, 2011 ИСПОЛНИТЕЛИ: Алматова Д. Т. Проект Правительства РК/ГЭФ/ПРООН Сохранение и устойчивое использование биоразнообразия в казахстанской части Алтае-Саянского экорегиона, эксперт Байдавлетов Р. Ж. Институт зоологии МОН РК, зоолог Грачев Ю. А. Институт зоологии МОН РК, зоолог Дюйсекеев Б. З. Комитет лесного и охотничьего хозяйства МСХ РК, Начальник Управления животного мира, представитель CITES в...»

«СЛОВО, ЧИСЛО И СЕМИОТИЧЕСКАЯ ТЕОРИЯ ЖИЗНИ Москва, 1999 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ 1. БИОЛОГИЧЕСКАЯ БИЛИНГВА 2. ЧТО ТАКОЕ ЖИЗНЬ С ТОЧКИ ЗРЕНИЯ БИОЛОГА 3.НАТУРАЛИСТСКАЯ КНИГА О ЖИЗНИ 4. ЖИВАЯ КАРТИНА ЖИЗНИ 5. СЛОВО И ЧИСЛО. 6. ПРОСТРАНСТВЕННОСТЬ ЧИСЛА. 7. НАПИСАНИЕ ЗВУКАМИ. 8.ВРЕМЯ МЕРА МИРА 9. СЕМИОТИЧЕСКАЯ АДЕКВАТНОСТЬ 10. ЖИВАЯ ПЛОТЬ КАК ПРОСТРАНСТВЕННЫЙ ЗНАК ЖИЗНИ. ЛИТЕРАТУРА 1 ВВЕДЕНИЕ Можно ли понять смысл письменного текста, изучая графику букв, типографскую краску и волокнистую структуру бумаги?...»

«БИОСФЕРА История термина • Биосфера (греч. bios жизнь, sphaira шар) сфера жизни. Ввёл это понятие немецкий учёный, профессор Лейпцигского университета Ф.Ратцель (1845-1904) в книге Органический мир и его происхождение (1869). В этой книге органическое население Земли в целом он рассматривал как живой покров планеты, а её поверхность называл пространством жизни - der Lebensraum. Это слово в современном немецком языке понимается как синоним биосферы • Сам же термин биосфера создал австрийский...»

«Организация – разработчик: ГОУ СПО Архангельский медицинский колледж Разработчик: Черноусова Надежда Николаевна, преподаватель первой квалификационной категории ГОУ СПО Архангельский медицинский колледж Рассмотрена и рекомендована к утверждению цикловой методической комиссией специальных фармацевтических и лабораторных дисциплин Архангельского медицинского колледжа. Заключение ЦМК СФ и ЛД протокол № _ от _ 20 г. Председатель ЦМК СФ и ЛД О.В. Дроздова _ Рецензенты: О.В. Дроздова, председатель...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.