WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 30 | 31 || 33 | 34 |   ...   | 37 |

«ПЯТЬ НЕРЕШЕННЫХ ПРОБЛЕМ НАУКИ Рисунки Сидни Харриса Уиггинс А., Уинн Ч. THE FIVE BIGGEST UNSOLVED PROBLEMS IN SCIENCE ARTHUR W. WIGGINS CHARLES M. WYNN With Cartoon ...»

-- [ Страница 32 ] --

http://setiathome.ssl.berkeley.edu/download.htm l Но есть еще одна будоражащая воображение возможность: жизнь на основе темной материи (темной энергии). Ввиду отсутствия взаимодействия темной материи (темной энергии) и обычного вещества (обычной энергии) мы не можем воспринимать их, как и они нас. А если учесть преобладание темной энергии (темной материи) над обычным веществом, то основанные на них формы жизни могут оказаться столь огромными по величине или по численности, что мы окажемся букашками, совершенно неведомыми истинным формам жизни Вселенной или не замечаемыми ими.

5. Аминокислоты Аминокислоты состоят из углерода (обозначаемого альфа-углерод) и связанных с ним четырех групп (рис. 1.3). Группы таковы: карбоксильная (СОО--), представляющая собой кислоту; аминогруппа (H3N+) — основание;

Поиску подлежат видимые или инфракрасные сигналы (пульсирующие или постоянные) со сверхузкими спектральными линиями, то есть сигналы, источниками которых, скорее всего, являются лазеры или аналогичная инопланетная техника.

Обыгрывание слова serendipity, означающего «везение на счастливые находки» и вошедшего в английский язык с легкой руки писателя XVIII века, родоначальника жанра «готического романа» Горация Уолпо-ла (1717-1797) после его знакомства с персидской сказкой «Три царевича из Серендипа», в которой героям необыкновенно везло на неожиданные открытия. Серендиб, как называли Цейлон арабы, представляет собой искаженное заимствование от санскритского составного слова суварна-випа («золотой остров»).

водород (Н) и обозначаемая знаком R группа — боковая цепь, своя для каждой аминокислоты.

При ковалентной связи углерода карбоксильной группы аминокислоты с азотом аминогруппы другой аминокислоты выделяется молекула воды и образуется пептидная связь. Белковые молекулы состоят из большой цепи аминокислот, соединенных пептидной связью.

В пищеварительной системе животных аминокислоты выделяются при переваривании белковых молекул, после чего кровотоком доставляются к клеткам организма, где повторно используются.

Аминокислоты идут на «сборку» белков в соответствии с «чертежом», хранящимся в клеточной ДНК и претворяемым в жизнь РНК при содействии белковых катализаторов (ферментов). Таким образом, большинство необходимых организму аминокислот можно собрать из имеющихся в нем аминокислот. Это так называемые заменимые аминокислоты. Те же, которые должны поступать с пищей, относятся к незаменимым аминокислотам.

Более 100 аминокислот встречаются у растений и бактерий, у животных же их 20. В приведенной таблице даны названия, принятые сокращенные обозначения и химические формулы (линейная запись) 20 аминокислот животных.

Аминокислота Обозначение Молекулярная формула Алании Аринин Аспарагин Аспарагиновая кислота Цистеин Глутаминовая кислота Глутамин Источник: http://chemistry.about.com/library/weekly/aa080801a.htm 6. Построение модели ДНК Крайне малые размеры ДНК не позволяют увидеть ее. Вот почему для некоторых она предстает сугубо отвлеченным понятием, а не действительно существующей молекулой. Лучшему пониманию ДНК может помочь собственноручная сборка ее физической модели.

Детские конструкторы прекрасно подходят для сборки моделей молекул, включая ДНК. Один из авторов этой книги (Артур Уиггинз) воспользовался набором конструктора K'NEX для сборки модели ДНК, которую на рис. 1.4 держат в руках дети, помогавшие ему в этом деле.

Данная модель собрана на основе набора K'NEX 32 Model Building Set в коробке Blue Value Tub (34006), который можно приобрести за 30 или долларов (см. www.knex.com ).

Рис. 1.4. Модель ДНК, которую держат в руках Рей, Мелисса и Тим Ноу (внуки А. У. Уиггинза) Руководство по сборке молекулы ДНК можно посмотреть на узле Всемирной Паутины http://c3.biomath.mssm.edu/knex/dna.models.knex.html По завершении работы вы получите часть молекулы ДНК, содержащую 48 пар оснований. В длину она составит около 1 м.

Получившаяся модель немного отличается от настоящей ДНК. В модели каждый синий стержень находится под углом 20° к предыдущему стержню, тогда как водородные связи в настоящей ДНК параллельны в пределах 6°. Однако модель показывает отдельные повороты спирали, большую и маленькую бороздки и парные основания А-Т и Ц-Г Уотсона— Крика.

При сборке данной модели вы сможете увидеть действие lac-оперона по расщеплению двух нитей ДНК в ходе репликации и работу рестрикционных ферментов, разрезающих ДНК в определенных местах благодаря «подгонке» этих ферментов к молекулам.

7. Кодоны Почти все формы жизни на Земле используют один и тот же генетический код, ключом к которому служат кодоны. Если нуклеотидные основания в ДНК представить в виде букв генетического кода, то кодоны будут словами, а ген — последовательностью кодонов, образующих предложение. Согласно основному посылу (центральная догма) [занесенного] в ген выражения (экспрессии гена), сообщение от ДНК записывается на мРНК (матричную РНК), которое затем переносится на белки.

Для уяснения работы кодонов рассмотрим ее подробно.

Последовательность содержащихся в ДНК нуклеотидных оснований задается чередованием аденина, тимина, цитозина и гуанина, обычно обозначаемых буква ми А, Т, Ц и Г.

мРНК переписывает нуклеотидные основания ДНК в том же порядке на рибосому, лишь заменив тиминна урацил. В рибосоме происходит сборка белков нанизыванием друг на друга аминокислот (см.: Список идей, 5.

Аминокислоты). Порядок следования аминокислот в белке определяет тРНК (транспортная РНК), передающая исходный порядок следования нуклеотидных оснований в ДНК.



Но каким образом четыре нуклеотидных основания определяют, какую из 20 аминокислот необходимо брать при построении белка?

Если бы каждое нуклеотидное основание задавало одну аминокислоту, можно было бы собрать лишь четыре аминокислоты.

Если бы два нуклеотидных основания совместно зада вали одну аминокислоту, выходило бы 42 = 16 аминокислот.

Если бы три нуклеотидных основания совместно задавали одну аминокислоту, можно было бы получить 43 = 64 аминокислоты, а этого более чем достаточно. Таким образом, кодон должен представлять собой триплет — три идущих вместе основания.

Троичная природа кодона нашла опытное подтверждение в 1961 году благодаря работе Фрэнсиса Крика.

Выяснением вопроса, какие триплеты нуклеотидных оснований определяют аминокислоты, занялся в 1961 году американский биохимик Маршалл Ниренберг, установивший, что УУУ кодирует аминокислоту фенилаланин.

Последующие опыты Ниренберга и других ученых к 1966 году помогли установить полное соответствие между кодона-ми и аминокислотами.

В таблицах приводятся трехбуквенные кодоны и соответствующие им аминокислоты, присоединяемые к выстраиваемой РНК белковой молекуле, а также нуклеотидные основания РНК (У, Ц, А и Г), а не ДНК (Т, Ц, А и Г).

Инициирующий [АУГ или ГУГ] и терминирующий [сокр. терм; это УАА (охра-кодон), УАГ (янтарь-кодон) и УГА (опал-кодон)] [трансляцию] кодоны указывают на начало и завершение транскрипции РНК.

Заметим, что большинство аминокислот задается не одним кодоном.

Такая избыточность нередко означает, что одна и та же аминокислота задается независимо от того, какое азотистое основание находится на третьем месте в кодоне. Поскольку именно третье положение часто неверно считывается, подобная избыточность сводит к минимуму последствия от ошибок в считывании.

ЦУУ, ЦУЦ, 8. Укладка белков Белки, плод усилий ДНК, РНК и белковых ферментов, несут на себе бремя жизни — в буквальном и переносном смысле. На два вида белков, изза своего строения названных глобулярными [округлыми] и фибриллярными * [вытянутыми], возложены многочисленные обязанности:

Ферментный катализ. Глобулярные белки точно подлаживаются под определенные молекулы, вызывая жизненно необходимые химические реакции.

Защита. Различные глобулярные белки берегут от определенных молекул, которые «подстраиваются» под облик белков.

Транспортировка. Другая разновидность глобулярных белков занимается доставкой небольших молекул, опять же исходя из облика белка.

Например, гемоглобин имеет полость, подстроенную под молекулу Фибриллярные белки образованы полипептидными цепями, которые расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы), или слои.

Нерастворимы в воде и растворах солей. Основные структурные элементы соединительной ткани (коллаген (сухожилия, связки, хрящ), кератин (волосы, ногти) и др.).

кислорода, переносит кислород через кровь и при необходимости «сгружает». Представьте, что случится, если молекула угарного газа займет полость в гемоглобине и «застрянет» там и гемоглобин уже не сможет доставлять кислород.

Обеспечение волокнами. Коллаген — самый распространенный фибриллярный белок у позвоночных животных. Это молекулярная основа костей, связок, сухожилий и кожи.

Движение. Молекулы актина и миозина обладают способностью скользить, обеспечивая сокращение мышц.

Регуляция. Белки выступают в качестве поверхностных рецепторов клетки и внутренних регуляторов поведения гена вроде lac-репрессоров (см. гл. 4).

Внешний облик белка имеет решающее значение при выполнении многих задач, и он далеко не прост. Если длинную нить аминокислот, составляющих белок, уподобить волокну, то функциональный облик белка можно уподобить замысловатой корзине, сплетенной из этого волокна.

Сложное, трехмерное устройство белков впервые заметили в 1930-е годы, когда У. Т. Астбури получил различные рентгенограммы дифракционных полос натянутого человеческого волоса. Американский химик Лайнус Полинг, работая с Робертом Кори в 1951 году, основываясь на знании химических связей, предположил, что самые простые белковые молекулы имеют спиралевидное (а) или складчатое (Р) строение.

(В Англии Джеймс Уотсон и Фрэнсис Крик боялись, как бы Полинг раньше их не открыл строение ДНК. Оказалось, что Полинг работал с неверными данными и в итоге предпочел тройную спираль для ДНК вместо двойной, которую предложили Уотсон и Крик в 1953 году, имея на руках блестящие данные рентгенограмм Розалинды Франклин.) Вскоре после выступления Полинга и Кори датский биохимик К.

Линдерстрем-Ланг предложил четырехуровневое строение белка, исходя из теоретических соображений (см. рис. 3.6). Современный уровень знаний позволил добавить еще два уровня, о которых мы поговорим, рассмотрев вначале некоторые опытные данные.

В 1957 году химик Джон Кендрю после завершения в Кембриджском университете (Великобритания) большой работы с использованием методов рентгеноструктурного анализа определил точное трехмерное строение белка миоглобина, доставляющего кислород к мышцам. Посмотрев на итоговые результаты, Кендрю заметил: «Пожалуй, более всего эту молекулу отличают упорядоченность и отсутствие всякой симметрии». Все дело в том, что белки обычно имеют скрученное, витое трехмерное строение. Даже опытным исследователям нужно приложить немало усилий, чтобы усмотреть в моделях белков некие закономерности. Вот почему столь ценно знание многоуровневой организации белков.

Первичная структура белка определяется цепью аминокислот, собираемых РНК согласно «чертежу» ДНК. У белка со 100 аминокислотами каждое место может занимать любая из 20 аминокислот, так что в итоге можно получить 20100 совершенно различных белков. Столь огромная величина (10130), превышающая число атомов обычного вещества во Вселенной, свидетельствует о невероятном многообразии белков.

Вторичную структуру представляет а-спираль и складчатый (-слой [тяж], как и предполагал Полинг. Эти структуры возникают вследствие притягивания положительно заряженных участков молекулы к отрицательным участкам той же молекулы и иных электрических воздействий.



Pages:     | 1 |   ...   | 30 | 31 || 33 | 34 |   ...   | 37 |
 

Похожие работы:

«Сохань Ирина Владимировна ТОТАЛИТАРНЫЙ ПРОЕКТ ГАСТРОНОМИЧЕСКОЙ КУЛЬТУРЫ (НА ПРИМЕРЕ СТАЛИНСКОЙ ЭПОХИ 1920–1930-х годов) Издательство Томского университета 2011 УДК 343.157 ББК 67 С68 Рецензенты: Коробейникова Л.А., д. филос. н., профессор ИИК ТГУ Мамедова Н.М., д. филос. н., профессор каф. философии Моск. Гос.Торгово-экономического ун-та Савчук В.В., д. филос. н., профессор ФсФ СПбГУ Сохань И.В. Тоталитарный проект гастрономической культуры (на С68 примере Сталинской эпохи 1920–1930-х годов). –...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.