WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS


Pages:     | 1 |   ...   | 24 | 25 || 27 | 28 |

«АСТ; М.; Аннотация Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными ...»

-- [ Страница 26 ] --

Разногласие обусловлено, как уже говорилось, тем, что, пользуясь формулами учебника, мы не приняли во внимание ослабления силы тяжести с высотой. Ясно, что если снаряд притягивается Землей слабее, он должен при данной скорости подняться выше.

Не следует спешить с заключением, что приводимые в учебниках формулы для вычисления высоты подъема тела, брошенного вверх, неверны. Они верны в тех границах, для которых предназначаются, и становятся неверными лишь тогда, когда вычислитель выходит с ними за указанные границы. Предназначаются же эти формулы для весьма небольших высот, где ослабление силы тяжести еще настолько незначительно, что им можно пренебречь. Так, для снаряда, брошенного вверх с начальной скоростью 300 м/с, ослабление силы тяжести сказывается весьма мало.

Но вот интересный вопрос: ощутительно ли уменьшение силы тяжести для высот, с которыми имеют дело современная авиация и воздухоплавание? Заметно ли уже на этих высотах уменьшение веса тел? В 1936 г. летчик Владимир Коккинаки поднимал в своей машине различные грузы на большую высоту: т на высоту 11 458 м, 1 т – на 12 100 м и 2 т на 11 295 м. Спрашивается: сохраняли ли эти грузы на указанных рекордных высотах свой первоначальный вес или теряли там заметную его часть? С первого взгляда может казаться, что подъем над земной поверхностью на десяток с лишним километров не может заметно уменьшить вес груза на такой большой планете, как Земля. Находясь у земной поверхности, груз отстоял от центра нашей планеты на 6400 км; поднятие на 12 км увеличивает это расстояние до 6412 км: прибавка как будто чересчур ничтожная, чтобы могла сказаться убыль в весе. Расчет, однако, говорит другое: потеря веса получается довольно ощутимая.

Выполним вычисление для одного случая: например, для подъема Коккинаки с грузом 2000 кг на 11 295 м. На этой высоте самолет находится дальше от центра земного шара, нежели при старте, в 6411,3/6400 раз.

Сила притяжения ослабевает здесь в Следовательно, груз на указанной высоте должен весить Если выполнить это вычисление (для чего удобно воспользоваться приемами приближенного расчета,47 то выяснится, что груз в 2000 кг на рекордной высоте весил только 1993 кг; он стал на 7 кг легче – убыль веса довольно ощутительная. Килограммовая гиря на такой высоте вытягивала бы на пружинном безмене только 996,5 г; 3,5 г веса теряется.

Еще большую потерю веса должны были обнаружить наши стратонавты, достигшие высоты 22 км: 7 г на каждый килограмм.

Для рекордного подъема летчика Юмашева, поднявшего в 1936 г. груз в 5000 кг на высоту 8919 м, можно вычислением установить общую потерю веса грузом в 14 кг.

Можно пользоваться приближенными равенствами (1 + )2 = 1 + 2 и 1: (1 + ) = 1 –, где – весьма малая величина.

Поэтому Я. И. Перельман. «Занимательная астрономия»

В 1959 г. летчик В.К. Коккинаки поднял на самолете ИЛ-18 на высоту 12 118 м груз в 20 т, в 1961 г. экипаж в составе И.М. Сухомлина, П.В. Солдатова, Н.Ф. Носова, В.И. Богданова на ТУ-114 поднял на 12 535 м груз в 30 035 кг. Пользуясь изложенным выше, читатель без труда сможет выполнить вычисление того, как велика была в этих случаях потеря веса.

Из трех законов планетных движений, с огромными усилиями вырванных у природы гением Кеплера, наименее понятен для многих, пожалуй, первый.

Закон этот утверждает, что планеты движутся по эллипсам. Почему же именно по эллипсам? Казалось бы, раз от Солнца во все стороны исходит одинаковая сила, ослабевающая с удалением в одинаковой мере, то планеты должны обходить Солнце по кругам, а никак не по вытянутым замкнутым путям, в которых Солнце к тому же не занимает центрального положения. Недоумения подобного рода исчерпывающе разъясняются при математическом рассмотрении вопроса. Но необходимыми познаниями из высшей математики владеют лишь немногие друзья неба. Постараемся же сделать ощутительной правильность законов Кеплера для тех наших читателей, которые могут распоряжаться только арсеналом элементарной математики.

Вооружившись циркулем, масштабной линейкой и большим листом бумаги, будем сами строить планетные пути и таким образом убедимся графически, что получаются они такими, какими должны быть согласно законам Кеплера.

Рис. 83. Сила притяжения планеты Солнцем увеличивается с уменьшением расстояния Движение планет управляется силой тяготения. Займемся ею. Кружок в правой части рис. 83 изображает некое воображаемое солнце; влево от него – воображаемая планета. Расстояние между ними пусть будет 1 000 000 км, на чертеже оно представлено 5 см – в масштабе 200 000 км в 1 см.

Стрелка в 0,5 см длины изображает силу, с какой притягивается к Солнцу наша планета (рис. 83). Пусть теперь планета под действием этой силы приблизилась к Солнцу и находится от него на расстоянии всего 900 000 км, т.е. 4,5 см на нашем чертеже. Притяжение планеты к Солнцу теперь усилится по закону тяготения в (10/9)2, т. е. в 1,2 раза. Если раньше притяжение изображено было стрелкой в 1 единицу длины, то теперь мы должны придать Я. И. Перельман. «Занимательная астрономия»

стрелке размер 1,2 единицы. Когда расстояние уменьшится до 800 000 км, т. е. до 4 см на нашем чертеже, сила притяжения возрастет в (5/4)2 т. е. в 1,6 раза, и изобразится стрелкой в 1,6 единицы.

При дальнейшем приближении планеты к Солнцу до расстояния 700, 600, 500 тысяч км сила притяжения соответственно выразится стрелками в 2, в 2,8 и в 4 единицы длины.

Можно представить себе, что те же стрелки изображают не только притягивающие силы, но и перемещения, которые тело совершает под влиянием этих сил за единицу времени (в этом случае перемещения пропорциональны ускорениям, а стало быть, и силам).

В дальнейших наших построениях мы будем пользоваться этим чертежом как готовым масштабом перемещений планеты.

Приступим теперь к построению пути планеты, обращающейся вокруг Солнца. Пусть в некоторый момент планета той же массы, что и сейчас рассмотренная, двигаясь в направлении WK со скоростью в 2 единицы длины, очутилась в точке К, находящейся на расстоянии 800 000 км от Солнца (рис. 84). На этом расстоянии от Солнца его притяжение будет действовать на планету с такой силой, что заставит ее в единицу времени переместиться по направлению к Солнцу на 1,6 единицы длины; за тот же промежуток времени планета продвинется в первоначальном направлении WK на 2 единицы. В результате она переместится по диагонали КР параллелограмма, построенного на перемещениях К1 и К2; эта диагональ равна 3 единицам длины (рис. 84).

Рис. 84. Как Солнце S искривляет путь планеты WKPR Очутившись в точке Р, планета стремится двигаться дальше по направлению КР со скоростью 3 единиц. Но в то же время под действием притяжения Солнца на расстоянии SP =5,8 она должна в направлении SP пройти путь Р4 = 3. В результате она пройдет диагональ PR параллелограмма.

Я. И. Перельман. «Занимательная астрономия»

Дальше вести построение на том же чертеже мы не станем: масштаб слишком крупен.

Понятно, что чем масштаб мельче, тем большую часть пути планеты удастся нам поместить на чертеже и тем меньше будет резкость углов нарушать сходство нашей схемы с истинным путем планеты. На рис. 85 дана та же картина в более мелком масштабе для воображаемого случая встречи Солнца с каким-нибудь небесным телом, по массе подобным вышеупомянутой планете. Здесь ясно видно, как Солнце отклоняет планету-пришельца от ее первоначального пути и заставляет следовать по кривой P—I–II–III–IV–V– VI. Углы построенного пути здесь не так резки, и отдельные положения планеты нетрудно уже соединить плавной кривой линией.

Что же это за кривая? Ответить на этот вопрос поможет нам геометрия. Наложите на чертеж (рис. 85) листок прозрачной бумаги и перенесите на нее шесть произвольно взятых точек планетного пути. Выбранные шесть точек (рис. 86) перенумеруйте в любом порядке и соедините между собой в той же последовательности прямыми отрезками. Вы получите вписанную в путь планеты шестиугольную фигуру частью с перекрещивающимися сторонами. Продолжите теперь прямую 1–2 до пересечения с линией 4–5 в точке I Таким же образом получите точку II на пересечении прямых 2–3 и 5–6, затем точку III – на пересечении 3–4 и 1–6. Если исследуемая нами кривая есть одно из так называемых «конических сечений», т. е. эллипс, парабола или гипербола, то три точки I, II и III должны оказаться на одной прямой линии. Такова геометрическая теорема (не из числа тех, что проходятся в средней школе), носящая название «шестиугольника Паскаля».

Рис. 85. Солнце отклоняет планету Р от ее первоначального прямого пути, заставляя ее описывать кривую линию Тщательно выполненный чертеж всегда даст указанные точки пересечения на одной прямой. Это доказывает, что исследуемая кривая есть либо эллипс, либо парабола, либо Я. И. Перельман. «Занимательная астрономия»

гипербола. К рис. 85 первое, очевидно, не подходит (кривая незамкнутая), значит, планета двигалась здесь по параболе или гиперболе. Соотношение первоначальной скорости и силы притяжения таково, что Солнце лишь отклоняет планету от прямолинейного пути, но не в состоянии заставить ее обращаться вокруг себя, «захватить» ее, как говорят астрономы.

Рис. 86. Геометрическое доказательство, что планеты движутся вокруг Солнца по коническим сечениям (подробности в тексте) Постараемся теперь подобным же образом уяснить второй закон движения планет – так называемый закон площадей. Рассмотрите внимательно рис. 21, (стр. 59). Двенадцать намеченных на ней точек делят ее на 12 участков; они не равны по длине, но нам известно, что они проходятся планетой в одинаковое время. Соединив точки 7, 2, J и т. д. с Солнцем, получите 12 фигур, которые приближенно можно представить треугольниками, если соединить точки хордами. Измерив их основания и высоты, вычислите их площади. Вы убедитесь, что все треугольники имеют одинаковую площадь. Другими словами, вы приходите ко второму закону Кеплера:

Радиусы-векторы планетных орбит описывают в равные промежутки времени равные площади.

Итак, циркуль до известной степени помогает постичь первые два закона планетных движений. Чтобы уяснить себе третий закон, сменим циркуль на перо и проделаем несколько численных упражнений.

Задумывались ли вы над тем, что произошло бы с нашей Землей, если бы, встретив препятствие, она внезапно была остановлена в своем беге вокруг Солнца? Прежде всего, конечно, тот огромный запас энергии, которым наделена наша планета как движущееся тело, Я. И. Перельман. «Занимательная астрономия»

превратится в теплоту и нагреет земной шар. Земля мчится по орбите в десятки раз быстрее пули, и нетрудно вычислить, что переход энергии ее движения в теплоту породит чудовищный жар, который мгновенно превратит наш мир в исполинское облако раскаленных газов… Но если бы даже Земля при внезапной остановке избегла этой участи, она все-таки обречена была бы на огненную гибель: увлекаемая Солнцем, она устремилась бы к нему с возрастающей скоростью и погибла бы в его пламенных объятиях.

Это роковое падение началось бы медленно, с черепашьей скоростью: в первую секунду Земля приблизилась бы к Солнцу только на 3 мм. Но с каждой секундой скорость ее движения прогрессивно возрастала бы, достигнув в последнюю секунду 600 км. С этой невообразимой скоростью земной шар обрушился бы на раскаленную поверхность Солнца.

Интересно вычислить, сколько времени длился бы этот гибельный перелет, долго ли продолжалась бы агония нашего обреченного мира. Сделать этот расчет поможет нам третий закон Кеплера, который распространяется на движение не только планет, но и комет и всех вообще небесных тел, движущихся в мировом пространстве под действием центральной силы тяготения. Закон этот связывает время обращения планеты (ее «год») с ее расстоянием от Солнца и гласит:

Квадраты времен обращения планет относятся между собой, как кубы больших полуосей их орбит.



Pages:     | 1 |   ...   | 24 | 25 || 27 | 28 |
 


Похожие работы:

«ПЯТЬ НЕРЕШЕННЫХ ПРОБЛЕМ НАУКИ Рисунки Сидни Харриса Уиггинс А., Уинн Ч. THE FIVE BIGGEST UNSOLVED PROBLEMS IN SCIENCE ARTHUR W. WIGGINS CHARLES M. WYNN With Cartoon Commentary by Sidney Harris John Wiley & Sons, Inc. Книга рассказывает о крупнейших проблемах астрономии, физики, химии, биологии и геологии, над которыми сейчас работают ученые. Авторы рассматривают открытия, приведшие к этим проблемам, знакомят с работой по их решению, обсуждают новые теории, в том числе теории струн, хаоса,...»

«Введение Часть I Глава 1 Глава 2 Глава 3 Глава 4 Глава 5 Глава 6 Глава 7 Глава 8 Глава 9 Глава 10 Часть II Глава 11 Глава 12 Глава 13 Глава 14 Глава 15 Глава 16 Глава 17 Глава 18 Глава 19 Часть III Глава 20 Глава 21 Глава 22 Глава 23 Глава 24 Глава 25 Глава 26 Глава 27 notes 1 2 3 4 5 6 7 8 9 Михаил Бухар Популярно о микробиологии Памяти академика Георгия Константиновича Скрябина Предисловие к первому изданию Роль и прямое участие микроорганизмов в нашей жизни трудно переоценить. Они поистине...»

«В.Е. Еремеев СИМВОЛЫ И ЧИСЛА КНИГИ ПЕРЕМЕН М., 2002 Электронная версия публикуется с исправлениями и добавлениями Оглавление Введение Часть 1 1.1. “Книга перемен” и ее категории 1.2. Символы гуа 1.3. Стихии 1.4. Музыкальная система 1.5. Астрономия 1.6. Медицинская арифмосемиотика Часть 2 2.1. Семантика триграмм 2.2. Триграммы и стихии 2.3. Пневмы и меридианы 2.4. Пространство и время 2.5. “Магический квадрат” Ло шу 2.6. Триграммы и теория люй 2.7. Этические спектры дэ 2.8. Теория эмоций 2.9....»

«Методы слепой обработки сигналов и их приложения в системах радиотехники и связи Москва Радио и связь 2003 УДК 621.396 Горячкин О.В. Методы слепой обработки сигналов и их приложения в системах радиотехники и связи. – М.: Радио и связь, 2003. – 230с.: ил. ISB 5-256-01712-8. Книга посвящена новому направлению цифровой обработки сигналов, известному как слепая обработка сигналов. Методы и алгоритмы слепой обработки сигналов находят свои приложения в системах связи, задачах цифровой обработки речи,...»

«РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ по дисциплине НАУКИ О ЗЕМЛЕ Для студентов I курса Направление подготовки 020400.62 Биология Профиль: Биоэкология, Ботаника, Общая биология, Физиология человека Квалификация (степень) Бакалавр Форма обучения Очная Обсуждено на заседании кафедры Составители: ботаники 2013 г. к.б.н., доцент Иванова С.А., Протокол № к.б.н., ассистент Зуева Л.В. Заведующий кафедрой С.М. Дементьева Тверь 2013 2. Пояснительная записка Цели дисциплины: Формирование теоретических знаний и...»

«АННОТАЦИЯ Книга Я. И. Перельмана знакомит читателя с отдельными вопросами астрономии, с её замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звёздного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл. Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нём удивительных явлений и возбудить интерес к одной из...»

«Библиотека повара выпускается для того, чтобы помочь повару в его практической работе на производстве, повысить его квалификацию. В настоящем издании изложена технология приготовления 226 холодных блюд и закусок из мясопродуктов, домашней и дикой птицы, субпродуктов, рыбопродуктов, мясной и рыб ной гастрономии, грибов, свежей зелени, свежих, соленых и маринованных овощей, а также 35 соусов и приправ. Кроме того, в книге приведены некоторые сведения о ра бочем месте повара, необходимом инвентаре...»

«Л юбознательные путешественники, совершающие вояж по побережью или горным внутренним районам Валенсии, не перестают удивляться тому, как разнообразна народная кухня испанского средиземноморья. Вездесущая паэлья и другие блюда из риса – далеко не единственная гастрономическая достопримечательность этих мест. В городах и сельских районах Валенсии готовят бесчисленное множество оригинальных повседневных блюд, столь вкусных, сколь мало известных. Время и житейская мудрость простых людей...»

«Сохань Ирина Владимировна ТОТАЛИТАРНЫЙ ПРОЕКТ ГАСТРОНОМИЧЕСКОЙ КУЛЬТУРЫ (НА ПРИМЕРЕ СТАЛИНСКОЙ ЭПОХИ 1920–1930-х годов) Издательство Томского университета 2011 УДК 343.157 ББК 67 С68 Рецензенты: Коробейникова Л.А., д. филос. н., профессор ИИК ТГУ Мамедова Н.М., д. филос. н., профессор каф. философии Моск. Гос.Торгово-экономического ун-та Савчук В.В., д. филос. н., профессор ФсФ СПбГУ Сохань И.В. Тоталитарный проект гастрономической культуры (на С68 примере Сталинской эпохи 1920–1930-х годов). –...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.