WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 19 | 20 || 22 | 23 |   ...   | 27 |

«АННОТАЦИЯ Книга Я. И. Перельмана знакомит читателя с отдельными вопросами астрономии, с её замечательными научными достижениями, рассказывает в увлекательной форме о ...»

-- [ Страница 21 ] --

Так как абсолютная величина Солнца равна 4,8, то оно ярче, нежели средняя из «соседних» звёзд, в Будучи в 25 раз абсолютно тусклее Сириуса, Солнце оказывается всё же в 50 раз ярче, чем с р е д н и е из окружающих его звёзд.

Самой большой светимостью обладает недоступная простому глазу звёздочка восьмой величины в созвездии Золотой Рыбы, обозначаемая Вычисление можно выполнить по следующей формуле, происхождение которой станет ясно читателю, когда немного позднее он познакомится ближе с «парсеком» и «параллаксом»:

Здесь М – абсолютная величина звезды, m – её видимая величина, – параллакс звезды в секундах. Последовательные преобразования таковы:

откуда Для Сириуса, например, m = –1,6 = 0",38. Поэтому его абсолютная величина латинской буквой S. Созвездие Золотой Рыбы находится в южном полушарии неба и не видно в умеренном поясе нашего полушария. Упомянутая звёздочка входит в состав соседней с нами звёздной системы – Малого Магелланова Облака, расстояние которого от нас оценивается примерно в 12 000 раз больше, чем расстояние до Сириуса. На таком огромном удалении звезда должна обладать совершенно исключительной светимостью, чтобы казаться даже восьмой величины. Сириус, заброшенный так же глубоко в пространстве, сиял бы звездой 17-й величины, т. е.

был бы едва виден в самый могущественный телескоп.

Какова же светимость этой замечательной звезды? Расчёт даёт такой результат: минус восьмая величина. Это значит, что наша звезда абсолютно в: 400 000 раз (примерно) ярче Солнца! При такой исключительной яркости звезда эта, будучи помещена на расстоянии Сириуса, казалась бы на девять величин ярче его, т. е. имела бы примерно яркость Луны в фазе четверти! Звезда, которая с расстояния Сириуса могла бы заливать Землю таким ярким светом, имеет бесспорное право считаться самой яркой из известных нам звёзд.

Звёздная величина планет на земном и чужом небе Возвратимся теперь к мысленному путешествию на другие планеты (проделанному нами в разделе «Чужие небеса») и оценим более точно блеск сияющих там светил. Прежде всего укажем звёздные величины планет в максимуме их блеска на земном небе. Вот табличка.

Венера

Марс

Юпитер

Меркурий

Просматривая её, видим, что Венера ярче Юпитера почти на две звёздные величины, т. е. в 2,52 = 6,25 раза, а Сириуса в 2,5-2,7 = 13 раз (блеск Сириуса – 1,6-й величины). Из той же таблички видно, что тусклая планета Сатурн всё же ярче всех неподвижных звёзд, кроме Сириуса и Канопуса. Здесь мы находим объяснение тому факту, что планеты (Венера, Юпитер) бывают иногда днём видны простым глазом, звёзды же при дневном свете совершенно недоступны невооружённому зрению.

Далее приводим таблички блеска светил на небе Венеры, Марса и Юпитера без новых пояснений, так как они представляют собой лишь количественное выражение того, о чём говорилось уже в разделе «Чужие небеса»:

Солнце

Фобос

Демос

Меркурий

Солнце

Земля

Меркурий

Солнце

II ».................. –6,4 Сатурн

III ».................. – 5,6 Венера

Оценивая яркость планет на небе их собственных спутников, следует на первое место поставить «полный» Марс в небе Фобоса (–22,5), затем «полный» Юпитер в небе V спутника (–21) и «полный» Сатурн в небе его спутника Мимаса (–20): Сатурн здесь всего впятеро менее ярок, чем Солнце!

Поучительна, наконец, следующая таблица блеска планет, наблюдаемых одна с другой. Располагаем их в порядке убывания блеска.

Земля с Венеры.......... –6,6 Земля с Марса............ –2, Венера с Земли.......... –4,3 Юпитер с Венеры...... –2, Венера с Марса.......... –3,2 Юпитер с Меркурия.. –2, Марс с Земли............. –2, Табличка показывает, что на небе главных планет самыми яркими светилами являются Венера, наблюдаемая с Меркурия, Земля, видимая с Венеры, и Земля, видимая с Меркурия.

Людей, впервые направляющих зрительную трубу на неподвижные звёзды, поражает то, что труба, так заметно увеличивающая Луну и планеты, нисколько не увеличивает размеров звёзд, даже уменьшает их, превращая в яркую точку, не имеющую диска. Это заметил ещё Галилей, первый человек, взглянувший на небо вооружённым глазом. Описывая свои ранние наблюдения с помощью изобретённой им трубы, он говорит:

«Достойно замечания различие в виде планет и неподвижных звёзд при наблюдении через трубу. Планеты представляются маленькими кружками, резко очерченными, как бы малыми лунами; неподвижные же звёзды не имеют различимых очертаний... Труба увеличивает только их блеск, так что звёзды 5-й и 6-й величины делаются по яркости равными Сириусу, который является самой блестящей из неподвижных звёзд».

Чтобы объяснить такое бессилие телескопа по отношению к звёздам, придётся напомнить кое-что из физиологии и физики зрения. Когда мы следим за удаляющимся от нас человеком, его изображение на сетчатке глаза становится всё меньше. При достаточном удалении голова и ноги человека настолько сближаются на сетчатке, что попадают уже не на разные её элементы (нервные окончания), но на один и тот же, и тогда человеческая фигура кажется нам точкой, лишённой очертаний. У большинства людей это наступает тогда, когда угол, под которым усматривается предмет, уменьшается до 1'. Назначение телескопа состоит в том, чтобы увеличить угол, под которым глаз видит предмет, или, что то же самое, растянуть изображение каждой детали предмета на несколько смежных элементов сетчатки. О телескопе говорят, что он «увеличивает в 100 раз», если угол, под которым мы видим предметы в этот телескоп, в 100 раз больше угла, под которым мы на том же расстоянии видим их простым глазом. Если же какая-нибудь деталь и при таком увеличении усматривается под углом меньше 1', то данный телескоп недостаточен для рассмотрения этой подробности.



Нетрудно рассчитать, что самая мелкая подробность, какую можно различить на расстоянии Луны в телескоп, увеличивающий в 1000 раз, имеет в поперечнике 110 м, а на расстоянии Солнца – 40 км. Но если тот же расчёт сделать для ближайшей звезды, то получим огромную величину – 12 000 000 км.

Поперечник нашего Солнца меньше этой величины в 8 раз. Значит, перенесённое на расстояние б л и ж а й ш е й звезды, Солнце наше должно казаться точкой даже в телескоп с 1000-кратным увеличением. Ближайшая звезда должна обладать объёмом, в 600 раз большим Солнца, чтобы сильные телескопы могли показать её диск. На расстоянии Сириуса звезда должна для этого быть больше Солнца по объёму в раз. Так как большинство звёзд расположено гораздо дальше сейчас упомянутых, а размеры их в среднем не превышают в такой степени размеров Солнца, то звёзды и в сильные телескопы представляются нам точками.

«Ни одна звезда на небе, – говорит Джинс, – не имеет большего углового размера, чем булавочная головка с расстояния в 10 км, и нет ещё такого телескопа, в который предмет столь малых размеров был бы виден, как диск». Напротив, крупные небесные тела, входящие в состав нашей солнечной системы, показывают при наблюдении в телескоп свои диски тем крупнее, чем больше увеличение. Но, как мы уже имели случай упомянуть, астроном встречается здесь с другим неудобством: вместе с увеличением изображения ослабевает его яркость (вследствие распределения потока лучей на большую поверхность), слабая же яркость затрудняет различение подробностей. Потому при наблюдении планет и особенно комет приходится пользоваться лишь умеренными увеличениями телескопа.

Читатель, пожалуй, задаст вопрос: если телескоп не увеличивает звёзд, то зачем же употребляют его при их наблюдении?

После сказанного в предыдущих статьях едва ли нужно долго останавливаться на ответе. Телескоп бессилен увеличить в и д и м ы е размеры звёзд, но он усиливает их я р к о с т ь, а следовательно, умножает число звёзд, доступных зрению.

Второе, что достигается благодаря телескопу, это р а з д е л е н и е тех звёзд, которые представляются невооружённому глазу сливающимися в одну. Телескоп не может увеличить видимого поперечника звёзд, но увеличивает в и д и м о е р а с с т о я н и е между ними. Поэтому телескоп открывает нам двойные, тройные и ещё более сложные звёзды там, где невооружённый глаз видит одиночную звезду (рис. 73). Звёздные скопления, для простого глаза сливающиеся за дальностью расстояния в туманное пятнышко, а в большинстве случаев и вовсе невидимые, рассыпаются в поле телескопа на многие тысячи отдельных звёзд.

И, наконец, третья услуга телескопа при изучении мира звёзд состоит в том, что он даёт возможность и з м е р я т ь у г л ы с поразительной Рис. 73. Одна и та же звезда е Лиры (близ Веги), как она видна простым точностью: на фотографиях, полученных с современными большими телескопами, астрономы измеряют углы величиной в 0",01. Под таким углом усматривается бронзовая копейка с расстояния 300 км или человеческий волос с расстояния 100 м!

В самый сильный телескоп, как мы сейчас объяснили, нельзя у в и д е т ь поперечники неподвижных звёзд. До недавнего времени все соображения о том, каковы размеры звёзд, были только догадками. Допускали, что каждая звезда в среднем примерно такой же величины, как наше Солнце, но ничем не могли подкрепить этой догадки. И так как для различения звёздных диаметров необходимы более мощные телескопы, чем самые сильные телескопы нашего времени, то задача определения истинных диаметров звёзд казалась неразрешимой.

Так обстояло дело до 1920 г., когда новые приёмы и орудия исследования открыли астрономам путь к измерению истинных размеров звёзд.

Этим новейшим достижением астрономия обязана своей верной союзнице – физике, не раз оказывавшей ей самые ценные услуги.

Мы сейчас изложим сущность способа, основанного на явлении интерференции света.

Чтобы уяснить принцип, на котором основан этот метод измерений, произведём опыт, требующий несложных средств: небольшого телескопа, дающего увеличение в 30 раз, и находящегося на расстоянии 10–15 м от него яркого источника света, загороженного экраном с очень узкой (несколько десятых долей миллиметра) вертикальной щелью. Объектив закроем непрозрачной крышкой с двумя круглыми отверстиями около 3 ММ в диаметре и расположенных по горизонтали симметрично относительно центра объектива на расстоянии 15 мм друг от друга (рис. 74). Без крышки щель в телеРис. 74. Схема установскоп имеет вид узкой полосы со значительно боки, поясняющей устройлее слабыми полосками по бокам. При наблюде- ство прибора «интерфении же с крышкой центральная яркая полоса рометра» для измерения представляется исчерченной вертикальными угловых диаметров звёзд.

тёмными полосами. Эти полосы появились как следствие взаимодействия (интерференции) двух световых пучков, прошедших сквозь два отверстия в крышке объектива. Если закрыть одно из отверстий, – полоски исчезнут.

Если отверстия перед объективом сделать подвижными, так что расстояние между ними можно будет изменять, то по мере их раздвижения тёмные полоски будут становиться всё менее ясными и, наконец, исчезнут. Зная расстояние между отверстиями в этот момент, можно определить угловую ширину щели, т. е. угол, под которым видна ширина щели наблюдателю. Если же знать расстояние до самой щели, то можно вычислить её действительную ширину. Если вместо щели у нас будет маленькое круглое отверстие, то способ определения ширины такой «круглой щели» (т. е. диаметра кружка) остаётся тем же самым, надо лишь полученный угол умножить на 1,22.

При измерении диаметров звёзд мы следуем тем же путём, но ввиду чрезвычайной малости углового диаметра звёзд должны применять весьма большие телескопы.

Помимо работы описанным инструментом, «интерферометром», есть и другой, более окольный способ оценки истинного диаметра звёзд, основанный на исследовании их спектров.



Pages:     | 1 |   ...   | 19 | 20 || 22 | 23 |   ...   | 27 |
 

Похожие работы:

«В.Е. Еремеев СИМВОЛЫ И ЧИСЛА КНИГИ ПЕРЕМЕН М., 2002 Электронная версия публикуется с исправлениями и добавлениями Оглавление Введение Часть 1 1.1. “Книга перемен” и ее категории 1.2. Символы гуа 1.3. Стихии 1.4. Музыкальная система 1.5. Астрономия 1.6. Медицинская арифмосемиотика Часть 2 2.1. Семантика триграмм 2.2. Триграммы и стихии 2.3. Пневмы и меридианы 2.4. Пространство и время 2.5. “Магический квадрат” Ло шу 2.6. Триграммы и теория люй 2.7. Этические спектры дэ 2.8. Теория эмоций 2.9....»

«Библиотека повара выпускается для того, чтобы помочь повару в его практической работе на производстве, повысить его квалификацию. В настоящем издании изложена технология приготовления 226 холодных блюд и закусок из мясопродуктов, домашней и дикой птицы, субпродуктов, рыбопродуктов, мясной и рыб ной гастрономии, грибов, свежей зелени, свежих, соленых и маринованных овощей, а также 35 соусов и приправ. Кроме того, в книге приведены некоторые сведения о ра бочем месте повара, необходимом инвентаре...»

«38 Русский американец Редакция: ИхтиоСфера Солнечный окунь 121151, Москва, ул. Киевская д.21 Главный редактор: Комардин О.В. Редколлегия: Базилевский А.А. 56 Страничка архивариуса Бородин В.В. Голубой окунь Мурзин Н.В. Подарин А.В. Степанов А.Л. Издание является проектом Межрегиональной общественной организации Академия Собора 62 Аральское море Гибель и ©Использование любых статей и иллюстраций возможно только возрождение с письменного разрешения редакции, при этом ссылка на ИхтиоСферу...»

«ФИЗИКА НАШИХ ДНЕЙ 523 12 ГОРЯЧАЯ МОДЕЛЬ ВСЕЛЕННОЙ /Г. В. Зельдович Минувший 1965 г. принес важнейшее открытие в астрономии. Измерения в области коротких и ультракоротких радиоволн ( = 7; 3; 0,25 см) показали наличие изотропного, т. е. не зависящего от направления наблюдения, излучения, соответствующего температуре около 3° К. К моменту написания статьи имелись: опубликованное в июле 1965 г. краткое сообщение об измерениях на — 7,3 см, заметка об измерениях на — 3 см (март 1966 г.), сообщение о...»

«Л юбознательные путешественники, совершающие вояж по побережью или горным внутренним районам Валенсии, не перестают удивляться тому, как разнообразна народная кухня испанского средиземноморья. Вездесущая паэлья и другие блюда из риса – далеко не единственная гастрономическая достопримечательность этих мест. В городах и сельских районах Валенсии готовят бесчисленное множество оригинальных повседневных блюд, столь вкусных, сколь мало известных. Время и житейская мудрость простых людей...»

«BY JERRY HOPKINS FOREWORD BY ANTHONY BOURDAIN PHOTOGRAPHS BY MICHAEL FREEMAN PERIPLUS ДЖЕРРИ ХОПКИНС ЭКСТРЕМАЛЬНАЯ КУХНЯ ПРИЧУДЛИВЫЕ И УДИВИТЕЛЬНЫЕ БЛЮДА, КОТОРЫЕ ЕДЯТ ЛЮДИ Москва 2006 УДК 641 ББК 36.997 (7США) Х-78 Хопкинс Д. Х-78 Экстремальная кухня: Причудливые и удивительные блюда, которые едят люди / Джерри Хопкинс. — Пер. с англ. К. Ткаченко. — М.: ФАИР-ПРЕСС, 2006. — 336 с: ил. ISBN 5-8183-1032-9 (рус.) ISBN 0-7946-0255-Х (англ.) Тараканы, змеи, личинки насекомых, мясо собак и кошек,...»

«МИФОЛОГИЗАЦИЯ ИРРИГАЦИОННОГО СТРОИТЕЛЬСТВА В СРЕДНЕЙ АЗИИ В ПОСТСОВЕТСКИХ ШКОЛЬНЫХ УЧЕБНИКАХ И СОВРЕМЕННЫЕ КОНФЛИКТЫ В РЕГИОНЕ ИЗ-ЗА ВОДЫ По постсоветским школьным учебникам государств Средней Азии посвящённым отечественной истории, родной литературе, экологии подобно призракам или аквамиражам бродят мифы, имеющие глубокие исторические корни, связанные с прошлым и настоящим орошения и ирригационного строительства в регионе. Мифы разжигают конфликты, а конфликты в свою очередь порождают новые...»

«Annotation Эта книга – для тех, кто хочет больше всех знать. В энциклопедии собраны тысячи самых любопытных, удивительных и необычных фактов из самых разных областей человеческого знания: астрономии, физики, географии, биологии, медицины, истории, археологии, мифологии и искусства. Увлекательно изложенные, краткие и емкие статьи помогут эрудиту расширить свой кругозор и поразить знакомых уровнем своих познаний. Прочитав эту книгу, вы сможете сказать с уверенностью: теперь я знаю все! Анатолий...»

«Сохань Ирина Владимировна ТОТАЛИТАРНЫЙ ПРОЕКТ ГАСТРОНОМИЧЕСКОЙ КУЛЬТУРЫ (НА ПРИМЕРЕ СТАЛИНСКОЙ ЭПОХИ 1920–1930-х годов) Издательство Томского университета 2011 УДК 343.157 ББК 67 С68 Рецензенты: Коробейникова Л.А., д. филос. н., профессор ИИК ТГУ Мамедова Н.М., д. филос. н., профессор каф. философии Моск. Гос.Торгово-экономического ун-та Савчук В.В., д. филос. н., профессор ФсФ СПбГУ Сохань И.В. Тоталитарный проект гастрономической культуры (на С68 примере Сталинской эпохи 1920–1930-х годов). –...»

«РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ по дисциплине НАУКИ О ЗЕМЛЕ Для студентов I курса Направление подготовки 020400.62 Биология Профиль: Биоэкология, Ботаника, Общая биология, Физиология человека Квалификация (степень) Бакалавр Форма обучения Очная Обсуждено на заседании кафедры Составители: ботаники 2013 г. к.б.н., доцент Иванова С.А., Протокол № к.б.н., ассистент Зуева Л.В. Заведующий кафедрой С.М. Дементьева Тверь 2013 2. Пояснительная записка Цели дисциплины: Формирование теоретических знаний и...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.