«Введение Часть I Глава 1 Глава 2 Глава 3 Глава 4 Глава 5 Глава 6 Глава 7 Глава 8 Глава 9 Глава 10 Часть II Глава 11 Глава 12 Глава 13 Глава 14 Глава 15 Глава 16 Глава 17 ...»
Несомненно, эти миллиарды бактерий оказывают огромное влияние на биохимию и физиологию нашего организма, выполняя зачастую стратегически важные функции обмена веществ. Они, микроорганизмы, помогают переваривать пищу (особенно растительные полисахариды), участвуют в синтезе аминокислот (особенно незаменимых) и являются единственным источником некоторых витаминов (в частности, витамина K и витамина B 12).
Они перерабатывают холестерин и жирные кислоты, образуя необходимые для нас стероидные гормоны.
В свою очередь организм человека предоставляет микроорганизмам все необходимые для их роста и развития условия: сбалансированные питательные среды, идеальные условия температуры и влажности. Более того, в последнее время по-новому рассматривается роль аппендикса в организме человека. Есть предположение, что именно в аппендиксе, как в убежище, микроорганизмы могут укрыться от неблагоприятных условий, наступающих при некоторых заболеваниях или при интенсивной антимикробной терапии, а затем вновь колонизируют пищевой тракт, восстанавливая столь необходимую микрофлору. Но мы не только предоставляем микроорганизмам «и стол, и дом», но и активно помогаем их распространению на большие расстояния. Так, чихая, мы разбрасываем вокруг себя около десяти миллионов микробов на расстояние от трех до пяти метров. Это огромный путь по сравнению с размерами микроорганизмов!
Вообще, следует заметить, что им свойственна способность к симбиозу. Они сосуществуют с насекомыми, растениями, грибами, мхами и даже, как мы видели, с человеком. Когда мы говорим о микроорганизмах-симбионтах, то умышленно исключаем патогенные микроорганизмы, заражение которыми вызывает серьезнейшие заболевания. Из этого не следует, что такие микробы в небольших количествах не присутствуют в теле любого из нас. Так, во рту у здорового человека можно найти стафилококки, стрептококки и другие патогенные бактерии. Однако его иммунная система справляется с ними, и он не заболевает. Более того, наличие этих патогенных микроорганизмов как бы служит для тренировки иммунной системы, поддерживая ее в рабочем состоянии. Отсутствие такого рода «тренировок», вызванное чрезмерным стремлением к чистоте, в развитых странах увеличило число заболеваний астмой, аллергией и ревматическим артритом. Только в США различными формами аллергии страдают около 50 млн человек.
Заканчивая это краткое описание симбиотических аспектов сосуществования человека и микроорганизмов, следует отметить, что дальнейшее изучение микробиологической составляющей суперорганизма, как можно назвать человеческий организм, может открыть новые пути регуляции его метаболизма и выявить много новых подходов в лечении и предотвращении заболеваний. В подтверждение важности изучения симбиоза следует привести слова И. Мечникова: «Многочисленные разнообразные ассоциации микроорганизмов, населяющие пищеварительный тракт человека, в значительной степени определяют духовное и физическое здоровье человека».
Глава Шахматы и микробиология шахматы? Они двигают вперед не только культуру, но и экономику!
Шахматы, как известно, изобрели в Индии, и многие, вероятно, слышали легенду о том, какую награду попросил изобретатель у индийского царя. Сначала его просьба показалась властителю более чем скромной. И действительно, в награду за изобретение столь увлекательной игры он попросил не золото, не драгоценные камни, а всего лишь пшеничные зерна. Но когда подсчитали их количество, которое нужно было отдать изобретателю (а он попросил, чтобы на первую клетку шахматной доски положили два зернышка, а на каждую следующую — в два раза больше, чем лежит на предыдущей, и т. д.), получилась фантастическая цифра — 264, или 18 446 744 073 709 551 616 зерен, что составляет примерно 600 млрд тонн. О том, как завершился разговор изобретателя с царем, легенда умалчивает. Можно только гадать, казнил ли он незадачливого изобретателя, узнав о поистине астрономической величине награды, либо только прогнал его, оставив без вознаграждения: владыки не любят расписываться в собственной несостоятельности. И в самом деле, было отчего разгневаться: 600 млрд тонн!!! Ведь даже в наше время, если бы благодарное человечество решило удовлетворить просьбу изобретателя шахмат, то оно должно было бы отдать ему более 300 годовых урожаев нашей планеты.
Но при чем тут микробы? А вот причем. Способность микроорганизмов к размножению феноменальна. Каждые 20 минут их количество удваивается, т. е. за 20 часов оно увеличивается в 260 раза. Получается то же фантастическое число, что и количество зерен, которое запросил изобретатель шахмат. Так что, будь индийский царь немного знаком с основами микробиологии, он бы мог вполне корректно отблагодарить изобретателя шахмат, не бросив и тени на свою репутацию владыки. Нужно было лишь дать ему несколько микробов и пропись среды, на которой они могут развиваться, и эти микроорганизмы обеспечили бы изобретателя затребованной наградой в довольно короткий срок. Правда, пришлось бы создать условия для беспрепятственного роста микроорганизмов, но не царское дело — вникать в такие детали: это задача для микробиолога.
Учитывая огромную скорость размножения микробов и их относительную неприхотливость к питательным веществам, остается только удивляться, как до сих пор они не вытеснили всех других представителей флоры и фауны. Что же все-таки сдерживает их развитие? Прежде всего, нельзя забывать, что количество питательных веществ ограниченно.
Кроме того, рост микроорганизмов тормозится продуктами обмена веществ, вызывающими самоотравление. В природной среде трудно обойти эти факторы. Но в условиях эксперимента можно обеспечить постоянный приток свежих питательных веществ и отток продуктов метаболизма, и тогда микроорганизмы смогут размножаться достаточно долго, оставаясь на стадии экспоненциального роста. Кстати, о стадиях развития микроорганизмов.
Помните загадку Сфинкса, которую тот задал Эдипу: «Скажи мне, кто ходит утром на четырех ногах, днем — на двух, а вечером — на трех?»
Ответ на эту загадку Сфинкса олицетворяет не только развитие человека, но и всего живого. В равной степени она относится и к развитию микроорганизмов. Однако в отличие от человека они в своем развитии проходят несколько большее число фаз. Так, различают лаг-фазу — период приспособления к среде; экспоненциальную фазу с высокой степенью увеличения числа клеток, когда их количество возрастает в геометрической прогрессии;
фазу замедленного роста, во время которой скорость роста микроорганизмов уменьшается и их количество уже не возрастает, а остается на одном уровне; и, наконец, пятая стадия — фаза отмирания, когда количество клеток уменьшается.
Все эти фазы плавно переходят одна в другую, и четко установить границу между ними бывает достаточно трудно. Можно только утверждать, что в той или иной фазе развития находится достаточно большой процент клеточной популяции.
Каждая из фаз имеет определенную продолжительность, не одинаковую у различных культур, при этом любая из них, находясь в конкретной фазе развития, обладает неповторимыми особенностями, тщательное изучение которых представляет огромный интерес для микробиологов. Конечно, наибольшее внимание привлекает фаза, в которой происходит интенсивное увеличение числа клеток.
Однако как поддержать клеточную популяцию в этом нужном состоянии постоянной молодости? И здесь на помощь микробиологам приходит уже упомянутый метод непрерывного культивирования. На чем он основан, или в чем секрет вечной молодости микроорганизмов?
Метод заключается в том, что в ростовую среду постоянно вводятся свежие питательные вещества и выводится соответствующее количество микробных клеток и продуктов метаболизма. При хорошей согласованности этих двух потоков система находится в состоянии динамического равновесия, и непрерывное выращивание микроорганизмов может продолжаться достаточно долго, хотя не бесконечно, так как в конце концов начинают действовать и другие факторы, например вырождение культуры и т. п.
И тем не менее благодаря этому методу можно получать микробный белок, близкий по составу к белку пшеницы. Этот путь ведет не только к удовлетворению запросов легендарного изобретателя шахмат, но и к решению продовольственной проблемы для человечества в целом.
Глава Всеядные Обычно под всеядностью подразумевают способность организма употреблять в пищу все окружающие его съедобные (и несъедобные!) вещества. В этом смысле каждый микроорганизм в отдельности отнюдь не является всеядным. Напротив, большинство микроорганизмов очень «привередливы» и употребляют в пищу довольно ограниченный набор питательных веществ, причем меню каждого микроба, как правило, сильно отличается от меню всех прочих микроорганизмов. В конце концов, как принято говорить, о вкусах не спорят. И именно на этом свойстве микроорганизмов — разнице во «вкусах» — основан наиболее употребляемый метод их идентификации. Перефразируя известную поговорку «Скажи мне, кто твой друг, и я скажу, кто ты», микробиологи с полным основанием могут заявить, обращаясь к неизвестному микробу: «Скажи мне, что ты ешь, и я скажу, кто ты!»
Правда, здесь следует оговориться. Привередливость иных микроорганизмов исчезает вместе с исчезновением их излюбленного блюда. И тогда они хотя и не становятся всеядными, но, во всяком случае, пытаются приспособиться и к другой пище, которую раньше не использовали в своем рационе. Это умение приспосабливаться к изменяющимся условиям питания определяет живучесть микроорганизмов. И такая их способность создала в последние десятилетия целую проблему. Дело не только в том, что затрудняется идентификация микроорганизмов, но и в том, что некоторые болезнетворные микробы сумели приспособиться к антибиотикам, созданным против них, поэтому врачи вынуждены постоянно разрабатывать новые препараты, к которым данный микроб еще не приспособился, т. е. не адаптировался.
Но вернемся к названию этой главы. Когда говорят о всеядности микроорганизмов, то имеют в виду не каждый из них в отдельности, а все царство микроорганизмов в целом. И в этом смысле микроорганизмы действительно всеядны. Благодаря этому свойству их можно обнаружить на всех окружающих нас веществах и предметах, иными словами, всеядность микроорганизмов объясняет их повсеместную распространенность, о которой мы уже говорили в главе 12.
Хлеб, молоко, мясо, овощи, или, выражаясь языком органической химии, белки, жиры и углеводы — весь этот спектр всеядности животных и человека характерен и для микроорганизмов. При более детальном анализе пищевых возможностей микроорганизмов открывается поистине удивительная картина. Оказывается, многие из них могут использовать в качестве пищевых субстратов вещества, не относящиеся к перечисленным выше трем классам органических соединений, олицетворяющим пищу как таковую.
Некоторые микроорганизмы способны потреблять такие инертные в химическом отношении вещества, как парафины, выделенные из нефти. Другие «питаются» даже веществами, обладающими бактерицидными свойствами, в частности фенолами. Вообще, мы не ошибемся, если все вещества, перечисленные в оглавлении толстого учебника органической химии, отнесем к пищевым субстратам микроорганизмов. При этом помимо простых веществ они способны использовать для своих пищевых потребностей и сложные.
Разложение биополимеров проводится не одним микробом, а целым комплексом микроорганизмов, работающих как бы «в единой бригаде» и по «единому наряду». Так, сложный полимер хитин одни микроорганизмы расщепляют до мономеров, из большого количества которых он состоит, а другие способствуют дальнейшему разложению образовавшихся мономеров.
В настоящее время в мире насчитывается около 2,5 млн органических и неорганических соединений, и большая часть этих веществ — отнюдь не естественного происхождения.