«Введение Часть I Глава 1 Глава 2 Глава 3 Глава 4 Глава 5 Глава 6 Глава 7 Глава 8 Глава 9 Глава 10 Часть II Глава 11 Глава 12 Глава 13 Глава 14 Глава 15 Глава 16 Глава 17 ...»
Однако было бы неправильно думать, что новые технологии базируются в основном на использовании биохимической активности микроорганизмов. Не менее важным в создании новых технологий может оказаться использование биологических мембран, роль которых в жизнедеятельности живых организмов и микроорганизмов трудно переоценить. Если бы удалось создать и использовать в технологии методы разделения веществ с использованием биологических мембран или их аналогов, то это позволило бы в значительной степени обновить и существенно интенсифицировать способы разделения веществ, снизив при этом энергетические затраты на проведение этих процессов.
Более того, если бы удалось решить вопросы управления проницаемостью таких мембран (что и происходит в живой клетке), то на базе полупроницаемых мембран можно было бы создавать системы, аналогичные гибким технологическим системам в промышленности. Пока методов работы с биомембранами не разработано, ведь сначала должны быть предложены способы их выделения из нативных клеток, а также стабилизации.
Исследования пленочного роста микроорганизмов позволили обнаружить не только удивительные механические свойства этих пленок (об этом упоминалось в главе 5), но и особенности контактов микроорганизмов друг с другом. Это позволило ученым из Массачусетского технологического университета увеличить мощность топливных элементов в несколько раз. При этом пленка функционировала как единая токопроводящая система, объединяющая индивидуальные потоки электронов, производимые отдельными клетками.
Однако уже работают мембраны — аналоги живых мембран. Можно ли отнести эти технологии к биотехнологии? И да и нет. Но в конце концов неважно, как мы назовем эти новейшие технологии разделения, — главное, что они используют принципы, близкие к биологическим, и на основании этого (хотя и условно) могут быть отнесены к биотехнологическим процессам.
Помимо возможного использования биомембран реальный интерес представляет применение внутриклеточных органелл микробной клетки, в частности, магнитосом. По сути они представляют собой маленькие магнитики, образующиеся внутри бактериальной клетки. В последнее время возникла потребность в магнитоуправляемых частицах для использования в диагностике и при лечении некоторых заболеваний.
Так, присоединение к антителам магнитных частиц вместо молекул флуоресцентных красителей примерно в 100 (!) раз повышает чувствительность методов выявления специфических белков, используемых для диагностики.
Кроме того, магнитные частицы применяются для гипертермии. Суть этого метода в том, что микромагниты можно с помощью магнитов или под действием магнитных полей направлять в нужный орган и удерживать там, а облучая их высокочастотным электромагнитным полем, вызывать локальный точечный нагрев, приводящий к гибели окружающих магнит клеток раковой опухоли.
Производство магнитных частиц одинаковой формы и размера — достаточно сложная задача, особенно если они измеряются нанометрами. И это только часть задачи: нужно еще покрыть каждую частицу белковой или углеводной оболочкой, к которой можно будет «привязать» химическими связями антитело.
Между тем есть другой, микробиологический путь получения таких магнитных частиц.
Известно, что некоторые бактерии (такие как, например, Magnetospirillum magneticum) способны извлекать железо из окружающей среды и синтезировать магнитные частицы, причем со значительно меньшим разбросом по величине и форме, чем при физикохимическом синтезе, и, кроме того, уже покрытые биологической мембраной. Вдобавок ко всему возможности генетической инженерии позволяют осуществлять синтез магнитных частиц с уже прикрепленными к ним антителами.
Таким образом, биотехнология позволяет получать магнитные частицы с различными антителами и использовать их для точной «адресной» доставки лекарств, радионуклидов или «тепловых бомб» к пораженным органам и даже клеткам и осуществить наконец мечту Пауля Эрлиха о «магической пуле».
Биотехнология может умело извлекать пользу не только из различных свойств микроорганизмов, но из самого факта их широкого распространения.
Рассмотрим один из таких примеров. Известно, что растения в принципе способны выдерживать снижение температуры до -6 °C. Однако в действительности серьезные поражения растительных тканей листьев, например, апельсиновых деревьев наступают при минусовых температурах, близких к нулю. Дело в том, что на поверхности листьев образуются кристаллы льда, разрушающие их ткань. Микробиологи из Калифорнийского и Колорадского университетов, изучая вопросы морозоустойчивости цитрусовых, установили, что центрами кристаллообразования льда служат бактерии Erwinia herbicola и Pseudomonas viringa. Если бы удалось убрать с поверхности листьев эти бактерии, то удалось бы сократить довольно значительные потери от заморозков. Ученые выделили вирусы, которые, интенсивно размножаясь, лизируют указанные бактерии, и растения переживают период похолодания со значительно меньшими поражениями, конечно, если температура не опускается ниже -6 °C. По расчетам ученых, можно избежать ежегодных миллиардных убытков при использовании этих вирусов. Обработка ими растений уже широко применяется.
Интересно использование в качестве инсектицида мицелия грибов Mefarhizium anisopliae. Он продуцирует вещества, привлекающие насекомых. Поедая мицелий, они заражаются спорами гриба, который, прорастая в теле насекомых, убивает их. Это метод имеет огромные преимущества перед традиционными инсектицидами как в экономическом, так и в экологическом аспектах.
Заканчивая эту главу, следует еще раз подчеркнуть, что биотехнология, и это очевидно, в ближайшее время окажет серьезное воздействие на решение многих технических проблем и на проведение технологических процессов.
Изумительное совершенство и тончайшая согласованность работы уникальных и, увы, пока неповторимых механизмов получения энергии, кодирования и декодирования информации, проведения сложнейших химических синтезов с участием созданных для этой цели катализаторов-ферментов позволяет микробной клетке опережать даже новейшие достижения энергетики, вычислительной техники и химической технологии.
В приведенных нами примерах использования биотехнологических приемов так или иначе переплетаются проблемы экономики и энергетики, энергетики и экологии, экологии и экономики. Поневоле напрашивается вывод, что именно биотехнология является тем мечом, с помощью которого можно разрубить гордиев узел, в который эти проблемы переплелись в современном мире.
Пройдет еще несколько лет, и во многих областях техники появятся новинки, в основе которых будут лежать биологические системы. Мы стоим на пороге эпохи биотехники и биотехнологии и одной ногой уже через него перешагнули.
Микробиология — молодая наука. Она описывает и изучает мир микроорганизмов немногим более полутора веков, начиная с великих открытий Л. Пастера. Человечеству предстоит раскрыть еще много тайн и секретов: ведь сегодня мы можем объяснить еще далеко не все свойства и особенности микроорганизмов. Необходимо более тщательно изучать их устройство, и мы не только получим в руки надежные механизмы управления жизнедеятельностью микробов, но и откроем, возможно, новые, неизвестные нам законы, по которым Природа создала третье царство — царство микроорганизмов. И если в разгадке этих проблем захотят принять участие некоторые из наших читателей, то это и будет лучшей наградой автору.
Предисловие к первому изданию … Предисловие ко второму изданию … Введение … Часть I Были и небылицы … Глава 1 Как украли железную дорогу … Глава 2 Потомки луддитов … Глава 3 Секреты самурайских мечей … Глава 4 Микробы и… Бермудский треугольник … Глава 5 Микробы и землетрясения … Глава 6 Фонтаны, монеты и… микробы … Глава 7 Расхитители музейных ценностей … Глава 8 Геология рядом с нами … Глава 9 Пятью хлебами … Глава 10 Микробы-криминалисты … Часть II По ту сторону покровного стекла … Глава 11 От Левенгука до электронного микроскопа … Глава 12 Распространенность микроорганизмов … Глава 13 В здоровом теле… два фунта микробов … Глава 14 Шахматы и микробиология … Глава 15 Всеядные … Глава 16 Хлеб для Робинзона, или Несколько слов о пользе коллекционирования … Глава 17 Честолюбивые планы Урфина Джюса и Крейга Вентера … Глава 18 Если бы микробы исчезли … Глава 19 Микроскопы, микроскопы… … Часть III Микробиология и другие науки … Глава 20 Микробиология и генетика … Глава 21 Микробы и ферменты … Глава 22 Дом, в котором мы живем … Глава 23 Микроб-компьютер … Глава 24 Malleus et Scientia … Глава 25 Микробиология и космос … Глава 26 Микробы вытесняют бензин … Глава 27 Микробиология — основа новейших технологий … Послесловие … Примечания То, что мы рассказали, — не выдумка. В США во время шторма на одном из Великих озер именно таким образом разломился пополам и затонул пароход, груженный железной рудой.
Коэффициент трения между слоями определяется состоянием трущихся поверхностей и смазкой.
Дефо Д. Жизнь и удивительные приключения Робинзона Крузо. — М.: Олма Медиа Групп, 2012.
Физики продолжают шутить / Сост. Ю. Конобеев, В. Павлинчук, Н. Работнов, В. Турчин. — М.: Либроком, 2001.
Микрограмм является единицей массы, равной миллионной доле (1/1 000 000) грамма (1 10-6) или 1/1000 доле миллиграмма. — Прим. ред.
Шарден П. Феномен человека. — М.: ACT, Астрель, Полиграфиздат, 2012.
«Молотком и знанием» — девиз геологов.
COSPAR — Committee on Space Research.
Беляев А. Полное собрание сочинений в двух томах. — М.: Престиж бук, 2010.