WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 28 |

«Методы слепой обработки сигналов и их приложения в системах радиотехники и связи Москва Радио и связь 2003 УДК 621.396 Горячкин О.В. Методы слепой обработки сигналов и ...»

-- [ Страница 5 ] --

2) отсчеты информационной последовательности {xi }, таковы, что Доказательство:

Утверждение теоремы достаточно очевидно, если использовать эквивалентность условия на ранг матрицы H s и условия отсутствия общих корней у полиномов h1(z ),..., hM (z ) доказанного в Т3. Пусть в (2.19) t = или эквивалентно z = 0. Тогда если нам доступна (L M L M ) ковариационная матрица выходных отсчетов R y = M YL (0)YL (0), то:

условия следует, что R x = I 2 L 1, и R y = H S H*. Для известных R y и 2 первое условие теоремы гарантирует единственность решения задачи слепой идентификации.

Итак, как для случая детерминированной, так и статистической идентификации векторного канала присутствует условие отсутствия общих корней у полиномов h1(z ),..., hM (z ). Это означает, что для идентификации мы в полной мере используем перекрестные связи каналов. Естественно, что избавиться от этого ограничения, можно только решив задачу идентификации скалярного канала. С другой стороны отсутствие возможности использовать перекрестные связи каналов существенно обедняет возможности слепой идентификации, особенно в задачах детерминированной идентификации.

2.2. Идентифицируемость скалярного канала Пусть последовательность сигнальных блоков на выходе канала в полиномиальной интерпретации описывается выражением:

Рассмотрим необходимые условия детерминированной идентификации.

Теорема 5. Для идентифицируемости детерминированного скалярного канала необходимо, чтобы линейная сложность информационной последовательности была больше (2 L 2 ).

Запишем (2.2) для скалярного канала в виде:

Где y L (z ) = y0 ( z ),..., y L 1(z ) и X H, L ( z ) - полиномиальная ганкелева L L матрица, составленная из полиномов x0 (z ),..., x2 L 2 (z ). Если система идентифицируема, то необходимо чтобы rank (X H (L )) = L (Т1).

Нетрудно показать, что в этом случае rank X H, L (z ) = L для z C. Это означает, что для z C матрица X H, L ( z ) имеет обратную матрицу X 1, L ( z ) такую, что X1, L (z ) X H, L (z ) = I L. Пусть для фиксированного y L (z ) имеет место равенства:

Если система идентифицируема, то для (2.23) имеется только тривиальное решение X1H, L (z ) = cX2 H, L (z ) и h1 = 1 / c h2. Тогда должно быть, по крайней мере, так что:

где A(z ) - L L полиномиальная матрица полного ранга. Так как X1H, L (z ) и X2 H, L (z ) матрицы ганкелевой структуры, то (2.24) можно переписать в виде системы 2 L 3 однородных уравнений для неизвестных элементов матрицы A(z ). Поскольку равенство (2.24) справедливо для z C, рассмотрим 2 L сечений z1,..., z2 L, тогда:

где a( zi ) - вектор длины 2 L, составленный из коэффициентов первого и последнего столбца матрицы A(zi ). Эта система имеет единственное нетривиальное решение, если ранг матрицы ее коэффициентов равен 2 L 1. Нетрудно заметить, что главный минор этой матрицы порядка 2 L 1 det (X( z1,..., z2 L 1 )) 0 при выполнении условия теоремы (см. (2.6)).

Отсюда следует в частности, что A(z ) = cI L. Теорема доказана.

Итак, мы показали, что если X H, L ( z ) - ганкелева матрица, составленная из коэффициентов входной последовательности, линейная сложность которой больше 2 L 2 то B(z ) = X1H, L ( z ) A(z ) X2 H, L (z ) 0 для всех A(z ) cI L.

Однако этого условия недостаточно для слепой идентификации, поскольку равенство (2.24) может выполняться, если B(z ) h = 0. Т.е. помимо условия на информационную последовательность мы должны наложить дополнительные ограничения на вектор канала и результат взаимодействия канала с информационной последовательностью.

Обычно отправным пунктом для обеспечения слепой идентифицируемости скалярного канала по одной реализации служит предположение о конечности алфавита информационных символов. Для этого случая известна следующая теорема [7], которую мы приведем без доказательства.

Теорема 6. Если информационная последовательность принимает значения на множестве {± 1,±3,..., q 1} Z, то для идентифицируемости детерминированного скалярного канала достаточно, чтобы:

1) линейная сложность информационной последовательности была больше (2 L 2 ) ;

2) отсчеты канала h0,..., hL 1 были линейно независимы на подмножестве целых чисел 0,±1,±2,...,±2(q 1)2 L 1 LL / 2 (t0 L + 1)L, t0 - номер первого символа информационной последовательности, начиная с которого линейная сложность информационной последовательности больше L.

Доказательство теоремы можно найти в [7], более мягкие условия для канала в [8].

Статистическая идентификация предоставляет значительно более широкий диапазон возможностей для слепой оценки скалярного канала.

Прежде всего, отметим, что в общем случае наличия на входе канала последовательности с гауссовским распределением на выходе нам доступны только вектор математического ожидания и ковариационная матрица.

Поскольку математическое ожидание как правило равно нулю, то для стационарного гауссовского случайного процесса единственной статистической характеристикой является корреляционная функция или автокорреляционная последовательность.

Известно, что автокорреляция не содержит информации о фазе передаточной функции канала. Действительно оценку автокорреляции на выходе канала для белого шума на входе можно записать в виде:

где ry (z ) - полином, коэффициенты которого являются отсчетами автокорреляционной функции на выходе канала. Если априори известно, что все нули полинома канала находятся внутри (системы с минимальной фазой) или вне (системы с максимальной фазой) окружности единичного радиуса, то, зная ry (z ), мы можем идентифицировать канал. В общем случае для стационарного гауссовского входа идентификация невозможна.



Для негауссовских стационарных случайных последовательностей условие идентифицируемости можно сформулировать в следующем виде.

Теорема 7. Для идентифицируемости скалярного канала достаточно, чтобы отсчеты информационной последовательности, при M{xi } = 0 и M xi x* = 2 (i j ), описывались негауссовыми расj пределениями.

Доказательство:

Обратное утверждение было доказано нами выше. Конструктивное доказательство фактически будет нами представлено в гл.4.

Аналогичное утверждение мы можем сформулировать для нестационарных по входу систем:

Теорема 8. Для идентифицируемости скалярного канала достаточно, чтобы независимые отсчеты информационной последовательноM{xi } = 0 имели по крайней мере нестационарную диссти, при Доказательство:

Убедимся в правоте данного утверждения рассмотрев более общий непрерывный случай [82].

Пусть модель системы описывается выражением (1.6).

Тогда в отсутствии шума, в соответствии с [90], мы можем записать наблюдаемый случайный процесс в виде следующего стохастического интеграла:

где: x( ) = d ( ) - стандартный комплексный «белый» шум, с нулевым математическим ожиданием и единичной дисперсией [90], x( ) = ( )x( ) - нестационарный случайный процесс.

Тогда корреляционная функция случайного процесса y (t ) имеет вид:

Возьмем двумерное преобразование Фурье от корреляционной функции B y (t1,t 2 ) :

информацию только о модуле передаточной функции системы h( ).

Во всех остальных случаях канал идентифицируем.

Запишем (2.28) в виде равенств отдельно для модуля и фазы B y (1,2 ) :

Фиксируя разность 1 2, получаем уравнения, как для модуля, так и для фазы передаточной функции, которые определяют её с точностью до комплексного множителя и некоторого постоянного временного смещения.

Утверждения теорем Т.7 и Т.8 могут быть распространены на случай, когда отсчеты информационной последовательности зависимы. Условия идентифицируемости и алгоритмы идентификации в данном случае представлены в гл.4.

МЕТОДЫ СЛЕПОЙ ИДЕНТИФИКАЦИИ ВЕКТОРНОГО

КАНАЛА

3.1. Метод взаимных отношений Рассмотрим задачу слепой идентификации векторного канала. Условия слепой идентифицируемости канала для этого случая сформулированы в теоремах Т.2 и Т.4 для случаев детерминированной и статистической идентификации соответственно.

Алгоритмы слепой идентификации, рассматриваемые в данном разделе, основаны на свойстве взаимной симметрии выходных сигналов каналов, на входе которых присутствует одна и та же информационная последовательность. Данное свойство было использовано нами в доказательстве Т.2 при записи выражения (2.3).

В соответствии с этим свойством при выполнении условий теоремы Т.2 матричное уравнение (2.12) в отсутствии шума имеет единственное, с точностью до комплексного множителя, решение для любых различных чисел z1,..., z s.

Y( z1,..., z s ) является линейной оболочкой единственного базисного вектора hT = h(1),..., h (1),..., h(M ),..., h (M ) или что эквивалентно h является собL 1 L ственным вектором матрицы Y* (z1,..., z s )Y(z1,..., z s ), соответствующим нулевому собственному числу.

Наличие шума заставляет нас искать приближенное решение наилучшее, с точки зрения некоторого критерия качества.

Идентифицируемая система в этом случае описывается следующим выражением:

где vl(k ) (z ) полином степени (t 1) над полем комплексных чисел, образованный блоком из t отсчетов на выходе k -го канала.

Для небольших значений уровня шума весьма эффективным оказывается метод наименьших квадратов, в соответствии с которым [10]:

где: • 2 - евклидова векторная норма.

Эквивалентно, оценка канала h может быть получена из собственного вектора, связанного с наименьшим сингулярным значением матрицы Y* (z1,..., z s )Y(z1,..., z s ) [11]:

Метод слепой идентификации, описываемый выражениями (3.2) или (3.3) в несколько иной форме хорошо известен в литературе как «метод взаимных отношений» [12].

Метод был впервые предложен в [9], а также независимо рядом других авторов (см. библиографию в [13]).

В отличие от большинства известных статистических методов слепой идентификации [12], метод взаимных отношений является весьма эффективным для небольших выборок при большом отношении сигнал-шум.

В [9] методом моделирования показано, что данный метод дает оценку близкую к границе Рао-Крамера.

Главные недостатки метода, это необходимость точного знания длины канала L, а также необходимость работы в уравнениях (3.2) или (3.3) с разреженными матрицами большого размера.

Использование полиномиальных представлений позволит нам далее несколько упростить вычислительную структуру алгоритма взаимных отношений.

Для этого запишем выражение (2.3) в виде:

Использование свойства симметрии для решения уравнения (2.8) относительно неизвестных полиномов h0 (s ),..., hL 1(s ) означает, что мы должны выбрать их таким образом, чтобы полином симметричен по переменным s1 и s2.

Выберем 2 L 1 различных значений формальной переменной z1,..., z2 L 1. Тогда используя (2.8) мы можем записать 2 L 1 однородных линейных уравнений относительной L неизвестных полиномов h0 (s ),..., hL 1(s ).

В матричной форме, получим:

При выполнении условий теоремы Т2 полиномиальная матрица Y1(z1,..., z2 L1, s1, s2 ) имеет ранг 2 L 1, действительно:

Ранее при доказательстве теоремы Т2 мы показали, что ранг (2 L 1 2L 1) матрицы X(z1,..., z2 L 1 ) для любых различных z1,..., z2 L личных s1 и s2. Это условие эквивалентно условию 1) теоремы Т.2.

В отсутствии шума легко получить явное решение однородной системы уравнений (3.5). Так как, по условию теоремы Т.2, матрица Y1(z1,..., z2 L1, s1, s2 ) имеет ранг 2 L 1, то хотя бы один из ее миноров порядка 2 L 1 M i ( z1,..., z 2 L 1, s1, s2 ) i = 1,...,2 L - номер столбца, отличен от нуля. Пусть это будет M 2 L (z1,..., z2 L 1, s1, s2 ), тогда полагая значение полинома hL1 (s2 ) произвольным, получим следующую невырожденную систему 2 L 1 линейных уравнений с коэффициентами над полем C :



Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 28 |
 

Похожие работы:

«4. В поэме Медный всадник А. С. Пушкин так описывает наводнение XXXV Турнир имени М. В. Ломоносова 30 сентября 2012 года 1824 года, характерное для Санкт-Петербурга: Конкурс по астрономии и наукам о Земле Из предложенных 7 заданий рекомендуется выбрать самые интересные Нева вздувалась и ревела, (1–2 задания для 8 класса и младше, 2–3 для 9–11 классов). Перечень Котлом клокоча и клубясь, вопросов в каждом задании можно использовать как план единого ответа, И вдруг, как зверь остервенясь, а можно...»

«ПЯТЬ НЕРЕШЕННЫХ ПРОБЛЕМ НАУКИ Рисунки Сидни Харриса Уиггинс А., Уинн Ч. THE FIVE BIGGEST UNSOLVED PROBLEMS IN SCIENCE ARTHUR W. WIGGINS CHARLES M. WYNN With Cartoon Commentary by Sidney Harris John Wiley & Sons, Inc. Книга рассказывает о крупнейших проблемах астрономии, физики, химии, биологии и геологии, над которыми сейчас работают ученые. Авторы рассматривают открытия, приведшие к этим проблемам, знакомят с работой по их решению, обсуждают новые теории, в том числе теории струн, хаоса,...»

«РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ по дисциплине НАУКИ О ЗЕМЛЕ Для студентов I курса Направление подготовки 020400.62 Биология Профиль: Биоэкология, Ботаника, Общая биология, Физиология человека Квалификация (степень) Бакалавр Форма обучения Очная Обсуждено на заседании кафедры Составители: ботаники 2013 г. к.б.н., доцент Иванова С.А., Протокол № к.б.н., ассистент Зуева Л.В. Заведующий кафедрой С.М. Дементьева Тверь 2013 2. Пояснительная записка Цели дисциплины: Формирование теоретических знаний и...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.