«Методы слепой обработки сигналов и их приложения в системах радиотехники и связи Москва Радио и связь 2003 УДК 621.396 Горячкин О.В. Методы слепой обработки сигналов и ...»
Модель системы передачи дискретных сообщений с учетом рассеяния в канале может быть представлена в виде следующего выражения [78]:
где: y (t ) - сигнал в приемнике; {an } - последовательность информационных символов алфавита A = {a1,..., ak,..., aM } ; sk (, ak ) - канальный сигнал, соответствующий k-му символу; h(, t ) - импульсная характеристика канала связи; v(t ) - аддитивная помеха, T - тактовый интервал. Для линейной цифровой модуляции (1.7) можно преобразовать к виду (1.8).
Для каналов с медленными временными замираниями справедливо следующее упрощение:
В различных случаях априорной параметрической и структурной неопределенности модель канала содержит ряд параметров и/или функций неизвестных на приемной стороне.
Неопределенность в рассматриваемом контексте может возникать не только вследствие прохождения информационных сигналов систем передачи через неизвестный искажающий канал, но и в случаях неизвестной структуры и параметров тестовых сигналов, используемых в системе передачи. Подобная проблема может возникнуть в задачах радиоразведки или радиоконтроля.
В случае «полной» непараметрической неопределенности относительно импульсной характеристики канала и канального сигнала мы имеем дискретно-временную модель системы передачи в виде (1.10), соответствующую модели с одним входом и выходом (1.6):
где: x(l ) - неизвестная информационная последовательность, описываемая той или иной статистической моделью, h(l ) - неизвестная импульсная характеристика сквозного дискретного канала системы передачи, L - память канала, v(l ) - неограниченная последовательность статистически независимых, произвольно «окрашенных» отсчетов шума.
Импульсная характеристика сквозного канала может рассматриваться как детерминированная, так и случайная функция. Когда канал стационарный, выходная последовательность стационарна в дискретном времени. Для линейных, постоянных во времени, детерминированных каналов, когда частота дискретизации выше скорости передачи символов (обычно в целое число m раз), дискретизированный сигнал является циклостационарным, или, что эквивалентно, может быть представлен как вектор стационарной последовательности, лежащий в основе модели с одним входом и множественным выходом (1.5), где мы складываем в стек m последовательность входных отсчетов, в течение приема очередного входного символа.
Тогда дискретно-временная модель системы передачи может быть представлена в виде:
В этом выражении y (l ) и h(n ) m -мерные вектора сигнала в приемнике и импульсной характеристики.
Другой случай, описываемый моделью векторного канала (1.11) возникает в случае пространственного разнесения нескольких приемных антенн (разнесенный прием).
В последние годы большой интерес исследователей в области связи вызывает возможность использования шумовых сигналов. По некоторым оценкам подобные системы могут обеспечить скорости передачи в радиоканале до 1 Гбит/с (сегодня экспериментально достигнутый уровень скорости передачи составляет десятки Мбит/с).
Основная идея здесь, это использование шумового (хаотического) сигнала в качестве несущего колебания системы передачи информации (т.н. прямохаотические системы связи [31]).
Информация вводится в хаотический сигнал с помощью амплитудной модуляции шумового сигнала или путем изменением параметров источника детерминированного хаоса. Поэтому использование специального тестового сигнала в этих системах становится нецелесообразным. В тоже же время, использование шумового сигнала в качестве несущего колебания создает широкие возможности применения в этих системах как детерминированных, так и статистических методов слепой идентификации.
Впервые алгоритм прямого слепого выравнивания канала связи в цифровых системах с амплитудной модуляцией был предложен, повидимому, Сато в 1975г. [19]. Алгоритм Сато был впоследствии обобщен Д. Годардом в 1980г. [20] для случая комбинированной амплитуднофазовой модуляции (известен также как «алгоритм постоянных модулей»).
В общем виде алгоритмы данного типа относятся к классу так называемых стохастических градиентных алгоритмов слепого выравнивания, которые строятся по принципу адаптивного эквалайзера (данный класс алгоритмов называют также алгоритмами Базганга).
Сигнал ошибки адаптивного эквалайзера в данном случае формируется безинерционным нелинейным преобразованием выходного сигнала, вид которого, зависит от используемой сигнально-кодовой конструкции [16].
Существенным, для алгоритмов данного типа, является то, что входные сигналы в цифровых системах связи, как правило, негауссовы, а влияние канала, приводящее к наложению большого числа этих сигналов, вследствие центральной предельной теоремы теории вероятностей, нормализует наблюдаемые отсчеты сигнала в приемнике. Поэтому сигнал ошибки в этих алгоритмах чувствителен именно к этим свойствам сигналов на выходе эквалайзера. Отличительным достоинством данных алгоритмов является отсутствие требований к стационарности ИХ канала на интервале оценивания. Причем заметим, что абсолютное большинство алгоритмов слепой идентификации и коррекции, так или иначе, требуют такой стационарности.
Этапом в развитии методов слепой обработки сигналов в системах связи стало использование статистик высокого порядка для идентификации каналов, входные сигналы которых описываются моделью стационарных негауссовских случайных процессов [6,16]. В рамках данных методов, как правило, удается найти явное решение для неизвестного канала.
Относительно недавно понятая возможность использования статистик 2-го порядка для слепой идентификации векторного канала связи ( m 1 ) существенно приблизила перспективу внедрения технологий слепой обработки в системы связи и спровоцировала целое направление работ последних лет [13,21], в рамках которого на сегодняшний день найдено целое семейство быстросходящихся алгоритмов идентификации. При этом для идентифицируемости канала существенно наличие хотя бы 2-х независимых каналов приема.
Использование статистик 2-го порядка для слепой идентификации скалярного канала ( m = 1 ) возможно в целом для нестационарной модели входного сигнала и в частном случае периодически-коррелированного (циклостационарного) сигнала.
Рис. 1.2. Модель нестационарного по входу канала связи.
Возможность слепой идентификации в случае циклостационарности сигнала на выходе была показана в [22], для принудительной циклостационарной модуляции сигнала на входе в [23] (Рис.1.2), в общем случае для нестационарного входа в [17].
Дискретно-временная модель широкого класса систем передачи дискретных сообщений может быть записана в виде:
где: hl, l = 0,..., L 1 - импульсная характеристика канала связи;
xi, i = 0,..., + L 2 - информационная последовательность. В зависимости от вида модулирующей последовательности мы можем получить различные структуры передаваемых сигналов (Рис.1.3).
Рис.1.3. Входные сигналы системы передачи: а) стационарная последовательность; б) последовательность с пассивной паузой; в) последовательность с активной паузой; г) последовательность с циклостационарной модуляцией Системы с модулирующими последовательностями, показанными на Рис.1.3.б,в,г относятся к классу систем с нестационарным входом. Наличие такого типа нестационарности в входных сигналов уже является достаточным условием для идентифицируемости канала связи вслепую.
При этом в системах с активной паузой (системы с испытательным импульсом) на тестирование канала тратится максимальное время. В тоже время в системах с циклостационарной модуляцией общего вида (Рис.1.3.г), как и в системах со стационарным входом мы не тратим время на тестирование неизвестного канала связи.
1.2.2. СОС в радиолокации В современной радиолокации использование для зондирования все более широкополосных электромагнитных импульсов напрямую связано с увеличением временной разрешающей способности и, следовательно, информативности этих систем.
Однако влияние тракта и среды распространения радиоволн возрастает пропорционально полосе частот используемых сигналов, что часто приводит к потере когерентности системы. Особенно этот эффект существенен для сверхширокополосной радиолокации.
Задачу слепой обработки сигналов в данном случае можно сформулировать как проблему оптимального когерентного приема неизвестных сигналов отраженных от протяженного объекта конечных размеров.
Такая проблема возникает в частности при активной радиолокации космических объектов через атмосферу Земли. РЛС подобного типа используются сегодня не только в системах противовоздушной, противоракетной и космической обороны, системах предупреждения о ракетном нападении, но и в задачах контроля за космическим «мусором», который за 40 лет космической эры заполняя околоземное космическое пространство, создает все большие проблемы для космической деятельности человечества.
Рис.1.4. Радиолокация космических объектов через ионосферу Земли.
В этом случае пачка зондирующих сигналов РЛС, проходя туда и обратно через атмосферу (см. Рис.1.4) получает искажения, вызванные частотной зависимостью коэффициента преломления ионосферы и поляризационной дисперсией, возникающей вследствие эффекта Фарадея.
Масштабы влияния данного эффекта рассмотрены в [32]. В соответствии с этими данными существенные дисперсионные искажения радиосигнала возникают уже в S диапазоне и быстро возрастают при увеличении полосы частот и длины волны.
В большинстве случаев модель сигнала РЛС, отраженного от пространственно распределенной цели можно представить в виде:
где: yn (t ) - последовательность отраженных импульсов; (, n ) коэффициент обратного рассеяния лоцируемого объекта; h(t ) - искаженный зондирующий импульс РЛС.
Коэффициент обратного рассеяния зависит от структуры и геометрии объекта, ориентации объекта и РЛС, их относительного движения, параметров зондирующего сигнала. Эта информация может быть использована для решения задач распознавания радиолокационного объекта и получения данных об его форме [25,26].
Геометрическую структуру радиолокационного объекта можно восстановить при достаточно большом пространственном разнесении приемников РЛС (радиолокационной базе) [27,28]. В этом случае реализуется возможность получения многоракурсных проекций, и задача сводится к использованию томографических методов [29].
В случае локации объекта из одной точки пространства распознавание объекта может быть осуществлено по временным, поляризационным или время-частотным портретам радиолокационной цели (сигнатурам).
Во всех этих задачах для восстановления коэффициента обратного рассеяния мы должны точно знать форму зондирующего импульса РЛС. В тоже время при распространении зондирующего импульса его форма меняется при прохождении через атмосферу [30] и приёмный тракт.
В этом случае для восстановления коэффициента обратного рассеяния лоцируемого объекта мы имеем задачу слепой идентификации скалярного или векторного радиолокационного канала. Причем в отличии от приложений слепой идентификации в системах связи, где практически всегда можно использовать технику испытательных импульсов для идентификации неизвестного канала, в радиолокации подобный подход практически невозможен.
Радиолокация поверхности Земли с летательных аппаратов с помощью радиолокаторов с синтезированной апертурой (РСА) за последние лет прошла путь от единичных научных экспериментов до устойчиво развивающейся отрасли дистанционного зондирования Земли (ДЗЗ) [33].
От применения этих систем научное сообщество ожидает в ближайшем будущем существенного прогресса в решении таких глобальных проблем, как предсказание землетрясений и извержений вулканов, понимания процессов глобального изменения климата и в науке о Земле в целом.