WWW.KNIGI.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 || 3 | 4 |   ...   | 28 |

«Методы слепой обработки сигналов и их приложения в системах радиотехники и связи Москва Радио и связь 2003 УДК 621.396 Горячкин О.В. Методы слепой обработки сигналов и ...»

-- [ Страница 2 ] --

Модель системы передачи дискретных сообщений с учетом рассеяния в канале может быть представлена в виде следующего выражения [78]:

где: y (t ) - сигнал в приемнике; {an } - последовательность информационных символов алфавита A = {a1,..., ak,..., aM } ; sk (, ak ) - канальный сигнал, соответствующий k-му символу; h(, t ) - импульсная характеристика канала связи; v(t ) - аддитивная помеха, T - тактовый интервал. Для линейной цифровой модуляции (1.7) можно преобразовать к виду (1.8).

Для каналов с медленными временными замираниями справедливо следующее упрощение:

В различных случаях априорной параметрической и структурной неопределенности модель канала содержит ряд параметров и/или функций неизвестных на приемной стороне.

Неопределенность в рассматриваемом контексте может возникать не только вследствие прохождения информационных сигналов систем передачи через неизвестный искажающий канал, но и в случаях неизвестной структуры и параметров тестовых сигналов, используемых в системе передачи. Подобная проблема может возникнуть в задачах радиоразведки или радиоконтроля.

В случае «полной» непараметрической неопределенности относительно импульсной характеристики канала и канального сигнала мы имеем дискретно-временную модель системы передачи в виде (1.10), соответствующую модели с одним входом и выходом (1.6):

где: x(l ) - неизвестная информационная последовательность, описываемая той или иной статистической моделью, h(l ) - неизвестная импульсная характеристика сквозного дискретного канала системы передачи, L - память канала, v(l ) - неограниченная последовательность статистически независимых, произвольно «окрашенных» отсчетов шума.

Импульсная характеристика сквозного канала может рассматриваться как детерминированная, так и случайная функция. Когда канал стационарный, выходная последовательность стационарна в дискретном времени. Для линейных, постоянных во времени, детерминированных каналов, когда частота дискретизации выше скорости передачи символов (обычно в целое число m раз), дискретизированный сигнал является циклостационарным, или, что эквивалентно, может быть представлен как вектор стационарной последовательности, лежащий в основе модели с одним входом и множественным выходом (1.5), где мы складываем в стек m последовательность входных отсчетов, в течение приема очередного входного символа.

Тогда дискретно-временная модель системы передачи может быть представлена в виде:

В этом выражении y (l ) и h(n ) m -мерные вектора сигнала в приемнике и импульсной характеристики.

Другой случай, описываемый моделью векторного канала (1.11) возникает в случае пространственного разнесения нескольких приемных антенн (разнесенный прием).

В последние годы большой интерес исследователей в области связи вызывает возможность использования шумовых сигналов. По некоторым оценкам подобные системы могут обеспечить скорости передачи в радиоканале до 1 Гбит/с (сегодня экспериментально достигнутый уровень скорости передачи составляет десятки Мбит/с).

Основная идея здесь, это использование шумового (хаотического) сигнала в качестве несущего колебания системы передачи информации (т.н. прямохаотические системы связи [31]).

Информация вводится в хаотический сигнал с помощью амплитудной модуляции шумового сигнала или путем изменением параметров источника детерминированного хаоса. Поэтому использование специального тестового сигнала в этих системах становится нецелесообразным. В тоже же время, использование шумового сигнала в качестве несущего колебания создает широкие возможности применения в этих системах как детерминированных, так и статистических методов слепой идентификации.

Впервые алгоритм прямого слепого выравнивания канала связи в цифровых системах с амплитудной модуляцией был предложен, повидимому, Сато в 1975г. [19]. Алгоритм Сато был впоследствии обобщен Д. Годардом в 1980г. [20] для случая комбинированной амплитуднофазовой модуляции (известен также как «алгоритм постоянных модулей»).

В общем виде алгоритмы данного типа относятся к классу так называемых стохастических градиентных алгоритмов слепого выравнивания, которые строятся по принципу адаптивного эквалайзера (данный класс алгоритмов называют также алгоритмами Базганга).

Сигнал ошибки адаптивного эквалайзера в данном случае формируется безинерционным нелинейным преобразованием выходного сигнала, вид которого, зависит от используемой сигнально-кодовой конструкции [16].

Существенным, для алгоритмов данного типа, является то, что входные сигналы в цифровых системах связи, как правило, негауссовы, а влияние канала, приводящее к наложению большого числа этих сигналов, вследствие центральной предельной теоремы теории вероятностей, нормализует наблюдаемые отсчеты сигнала в приемнике. Поэтому сигнал ошибки в этих алгоритмах чувствителен именно к этим свойствам сигналов на выходе эквалайзера. Отличительным достоинством данных алгоритмов является отсутствие требований к стационарности ИХ канала на интервале оценивания. Причем заметим, что абсолютное большинство алгоритмов слепой идентификации и коррекции, так или иначе, требуют такой стационарности.

Этапом в развитии методов слепой обработки сигналов в системах связи стало использование статистик высокого порядка для идентификации каналов, входные сигналы которых описываются моделью стационарных негауссовских случайных процессов [6,16]. В рамках данных методов, как правило, удается найти явное решение для неизвестного канала.



Относительно недавно понятая возможность использования статистик 2-го порядка для слепой идентификации векторного канала связи ( m 1 ) существенно приблизила перспективу внедрения технологий слепой обработки в системы связи и спровоцировала целое направление работ последних лет [13,21], в рамках которого на сегодняшний день найдено целое семейство быстросходящихся алгоритмов идентификации. При этом для идентифицируемости канала существенно наличие хотя бы 2-х независимых каналов приема.

Использование статистик 2-го порядка для слепой идентификации скалярного канала ( m = 1 ) возможно в целом для нестационарной модели входного сигнала и в частном случае периодически-коррелированного (циклостационарного) сигнала.

Рис. 1.2. Модель нестационарного по входу канала связи.

Возможность слепой идентификации в случае циклостационарности сигнала на выходе была показана в [22], для принудительной циклостационарной модуляции сигнала на входе в [23] (Рис.1.2), в общем случае для нестационарного входа в [17].

Дискретно-временная модель широкого класса систем передачи дискретных сообщений может быть записана в виде:

где: hl, l = 0,..., L 1 - импульсная характеристика канала связи;

xi, i = 0,..., + L 2 - информационная последовательность. В зависимости от вида модулирующей последовательности мы можем получить различные структуры передаваемых сигналов (Рис.1.3).

Рис.1.3. Входные сигналы системы передачи: а) стационарная последовательность; б) последовательность с пассивной паузой; в) последовательность с активной паузой; г) последовательность с циклостационарной модуляцией Системы с модулирующими последовательностями, показанными на Рис.1.3.б,в,г относятся к классу систем с нестационарным входом. Наличие такого типа нестационарности в входных сигналов уже является достаточным условием для идентифицируемости канала связи вслепую.

При этом в системах с активной паузой (системы с испытательным импульсом) на тестирование канала тратится максимальное время. В тоже время в системах с циклостационарной модуляцией общего вида (Рис.1.3.г), как и в системах со стационарным входом мы не тратим время на тестирование неизвестного канала связи.

1.2.2. СОС в радиолокации В современной радиолокации использование для зондирования все более широкополосных электромагнитных импульсов напрямую связано с увеличением временной разрешающей способности и, следовательно, информативности этих систем.

Однако влияние тракта и среды распространения радиоволн возрастает пропорционально полосе частот используемых сигналов, что часто приводит к потере когерентности системы. Особенно этот эффект существенен для сверхширокополосной радиолокации.

Задачу слепой обработки сигналов в данном случае можно сформулировать как проблему оптимального когерентного приема неизвестных сигналов отраженных от протяженного объекта конечных размеров.

Такая проблема возникает в частности при активной радиолокации космических объектов через атмосферу Земли. РЛС подобного типа используются сегодня не только в системах противовоздушной, противоракетной и космической обороны, системах предупреждения о ракетном нападении, но и в задачах контроля за космическим «мусором», который за 40 лет космической эры заполняя околоземное космическое пространство, создает все большие проблемы для космической деятельности человечества.

Рис.1.4. Радиолокация космических объектов через ионосферу Земли.

В этом случае пачка зондирующих сигналов РЛС, проходя туда и обратно через атмосферу (см. Рис.1.4) получает искажения, вызванные частотной зависимостью коэффициента преломления ионосферы и поляризационной дисперсией, возникающей вследствие эффекта Фарадея.

Масштабы влияния данного эффекта рассмотрены в [32]. В соответствии с этими данными существенные дисперсионные искажения радиосигнала возникают уже в S диапазоне и быстро возрастают при увеличении полосы частот и длины волны.

В большинстве случаев модель сигнала РЛС, отраженного от пространственно распределенной цели можно представить в виде:

где: yn (t ) - последовательность отраженных импульсов; (, n ) коэффициент обратного рассеяния лоцируемого объекта; h(t ) - искаженный зондирующий импульс РЛС.

Коэффициент обратного рассеяния зависит от структуры и геометрии объекта, ориентации объекта и РЛС, их относительного движения, параметров зондирующего сигнала. Эта информация может быть использована для решения задач распознавания радиолокационного объекта и получения данных об его форме [25,26].

Геометрическую структуру радиолокационного объекта можно восстановить при достаточно большом пространственном разнесении приемников РЛС (радиолокационной базе) [27,28]. В этом случае реализуется возможность получения многоракурсных проекций, и задача сводится к использованию томографических методов [29].

В случае локации объекта из одной точки пространства распознавание объекта может быть осуществлено по временным, поляризационным или время-частотным портретам радиолокационной цели (сигнатурам).

Во всех этих задачах для восстановления коэффициента обратного рассеяния мы должны точно знать форму зондирующего импульса РЛС. В тоже время при распространении зондирующего импульса его форма меняется при прохождении через атмосферу [30] и приёмный тракт.

В этом случае для восстановления коэффициента обратного рассеяния лоцируемого объекта мы имеем задачу слепой идентификации скалярного или векторного радиолокационного канала. Причем в отличии от приложений слепой идентификации в системах связи, где практически всегда можно использовать технику испытательных импульсов для идентификации неизвестного канала, в радиолокации подобный подход практически невозможен.

Радиолокация поверхности Земли с летательных аппаратов с помощью радиолокаторов с синтезированной апертурой (РСА) за последние лет прошла путь от единичных научных экспериментов до устойчиво развивающейся отрасли дистанционного зондирования Земли (ДЗЗ) [33].

От применения этих систем научное сообщество ожидает в ближайшем будущем существенного прогресса в решении таких глобальных проблем, как предсказание землетрясений и извержений вулканов, понимания процессов глобального изменения климата и в науке о Земле в целом.



Pages:     | 1 || 3 | 4 |   ...   | 28 |
 

Похожие работы:

«РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ по дисциплине НАУКИ О ЗЕМЛЕ Для студентов I курса Направление подготовки 020400.62 Биология Профиль: Биоэкология, Ботаника, Общая биология, Физиология человека Квалификация (степень) Бакалавр Форма обучения Очная Обсуждено на заседании кафедры Составители: ботаники 2013 г. к.б.н., доцент Иванова С.А., Протокол № к.б.н., ассистент Зуева Л.В. Заведующий кафедрой С.М. Дементьева Тверь 2013 2. Пояснительная записка Цели дисциплины: Формирование теоретических знаний и...»

«Сохань Ирина Владимировна ТОТАЛИТАРНЫЙ ПРОЕКТ ГАСТРОНОМИЧЕСКОЙ КУЛЬТУРЫ (НА ПРИМЕРЕ СТАЛИНСКОЙ ЭПОХИ 1920–1930-х годов) Издательство Томского университета 2011 УДК 343.157 ББК 67 С68 Рецензенты: Коробейникова Л.А., д. филос. н., профессор ИИК ТГУ Мамедова Н.М., д. филос. н., профессор каф. философии Моск. Гос.Торгово-экономического ун-та Савчук В.В., д. филос. н., профессор ФсФ СПбГУ Сохань И.В. Тоталитарный проект гастрономической культуры (на С68 примере Сталинской эпохи 1920–1930-х годов). –...»

«АГРОСПРОМ 2010 руководитель проекта: с.В. Шабаев Технический директор: И.Н. Елисеев Коммерческий директор: Д.В. гончаров Технический редактор: И.с. Шабаев Дизайн обложки и верстка: Е.А. сашина Корректура: о.П. Пуля Отдел реализации: Тел.: (495) 730-48-30, 730-47-30 Факс: (495) 730-48-28, 730-48-29 E-mail: agrosprom@mail.ru agrosprom@list.ru Фролов А.Н. Производство мяса бройлеров. Практическое руководство. – М.: АгросПроМ, 2010. – 128 с: ил. В рационе современного человека одним из важнейших...»

«ПЯТЬ НЕРЕШЕННЫХ ПРОБЛЕМ НАУКИ Рисунки Сидни Харриса Уиггинс А., Уинн Ч. THE FIVE BIGGEST UNSOLVED PROBLEMS IN SCIENCE ARTHUR W. WIGGINS CHARLES M. WYNN With Cartoon Commentary by Sidney Harris John Wiley & Sons, Inc. Книга рассказывает о крупнейших проблемах астрономии, физики, химии, биологии и геологии, над которыми сейчас работают ученые. Авторы рассматривают открытия, приведшие к этим проблемам, знакомят с работой по их решению, обсуждают новые теории, в том числе теории струн, хаоса,...»

«4. В поэме Медный всадник А. С. Пушкин так описывает наводнение XXXV Турнир имени М. В. Ломоносова 30 сентября 2012 года 1824 года, характерное для Санкт-Петербурга: Конкурс по астрономии и наукам о Земле Из предложенных 7 заданий рекомендуется выбрать самые интересные Нева вздувалась и ревела, (1–2 задания для 8 класса и младше, 2–3 для 9–11 классов). Перечень Котлом клокоча и клубясь, вопросов в каждом задании можно использовать как план единого ответа, И вдруг, как зверь остервенясь, а можно...»






 
© 2013 www.knigi.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.